Properties

Label 2-33-11.4-c5-0-3
Degree $2$
Conductor $33$
Sign $-0.416 + 0.909i$
Analytic cond. $5.29266$
Root an. cond. $2.30057$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−7.78 − 5.65i)2-s + (−2.78 + 8.55i)3-s + (18.7 + 57.6i)4-s + (48.1 − 34.9i)5-s + (70.0 − 50.8i)6-s + (9.43 + 29.0i)7-s + (84.9 − 261. i)8-s + (−65.5 − 47.6i)9-s − 572.·10-s + (−70.0 − 395. i)11-s − 545.·12-s + (−460. − 334. i)13-s + (90.7 − 279. i)14-s + (165. + 509. i)15-s + (−572. + 415. i)16-s + (1.61e3 − 1.17e3i)17-s + ⋯
L(s)  = 1  + (−1.37 − 0.999i)2-s + (−0.178 + 0.549i)3-s + (0.584 + 1.80i)4-s + (0.861 − 0.625i)5-s + (0.794 − 0.577i)6-s + (0.0727 + 0.224i)7-s + (0.469 − 1.44i)8-s + (−0.269 − 0.195i)9-s − 1.81·10-s + (−0.174 − 0.984i)11-s − 1.09·12-s + (−0.756 − 0.549i)13-s + (0.123 − 0.381i)14-s + (0.189 + 0.584i)15-s + (−0.558 + 0.405i)16-s + (1.35 − 0.987i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.416 + 0.909i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.416 + 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.416 + 0.909i$
Analytic conductor: \(5.29266\)
Root analytic conductor: \(2.30057\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :5/2),\ -0.416 + 0.909i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.387610 - 0.603578i\)
\(L(\frac12)\) \(\approx\) \(0.387610 - 0.603578i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (2.78 - 8.55i)T \)
11 \( 1 + (70.0 + 395. i)T \)
good2 \( 1 + (7.78 + 5.65i)T + (9.88 + 30.4i)T^{2} \)
5 \( 1 + (-48.1 + 34.9i)T + (965. - 2.97e3i)T^{2} \)
7 \( 1 + (-9.43 - 29.0i)T + (-1.35e4 + 9.87e3i)T^{2} \)
13 \( 1 + (460. + 334. i)T + (1.14e5 + 3.53e5i)T^{2} \)
17 \( 1 + (-1.61e3 + 1.17e3i)T + (4.38e5 - 1.35e6i)T^{2} \)
19 \( 1 + (-497. + 1.53e3i)T + (-2.00e6 - 1.45e6i)T^{2} \)
23 \( 1 + 1.21e3T + 6.43e6T^{2} \)
29 \( 1 + (2.34e3 + 7.22e3i)T + (-1.65e7 + 1.20e7i)T^{2} \)
31 \( 1 + (-5.87e3 - 4.26e3i)T + (8.84e6 + 2.72e7i)T^{2} \)
37 \( 1 + (406. + 1.25e3i)T + (-5.61e7 + 4.07e7i)T^{2} \)
41 \( 1 + (-1.80e3 + 5.55e3i)T + (-9.37e7 - 6.80e7i)T^{2} \)
43 \( 1 - 6.35e3T + 1.47e8T^{2} \)
47 \( 1 + (9.34e3 - 2.87e4i)T + (-1.85e8 - 1.34e8i)T^{2} \)
53 \( 1 + (5.78e3 + 4.20e3i)T + (1.29e8 + 3.97e8i)T^{2} \)
59 \( 1 + (6.85e3 + 2.10e4i)T + (-5.78e8 + 4.20e8i)T^{2} \)
61 \( 1 + (2.02e4 - 1.46e4i)T + (2.60e8 - 8.03e8i)T^{2} \)
67 \( 1 - 1.55e4T + 1.35e9T^{2} \)
71 \( 1 + (-5.22e4 + 3.79e4i)T + (5.57e8 - 1.71e9i)T^{2} \)
73 \( 1 + (-1.36e4 - 4.19e4i)T + (-1.67e9 + 1.21e9i)T^{2} \)
79 \( 1 + (-1.41e4 - 1.02e4i)T + (9.50e8 + 2.92e9i)T^{2} \)
83 \( 1 + (9.61e4 - 6.98e4i)T + (1.21e9 - 3.74e9i)T^{2} \)
89 \( 1 + 6.61e3T + 5.58e9T^{2} \)
97 \( 1 + (1.03e5 + 7.49e4i)T + (2.65e9 + 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.85982314821760886151782495043, −13.89441701280487809931063854416, −12.35313544539954706235701911110, −11.25208416679923897863839858885, −9.941696231560411302809827150449, −9.311245053756885801323357267796, −7.966917142004799275151121745855, −5.42881130654092828413559236530, −2.79252045874251224867094681138, −0.72211166929673124858496498961, 1.68811711634890474199752367383, 5.78640071834111103046752031554, 6.96420618358978185147401467455, 7.967729422045492351966213060583, 9.711799912387417569534374284947, 10.37705940499647739946661226758, 12.33963370808598988008440248661, 14.16909859265863090246233300121, 14.94705387486580056149984168018, 16.59746603058459849118824895839

Graph of the $Z$-function along the critical line