Properties

Label 2-33-11.7-c4-0-2
Degree $2$
Conductor $33$
Sign $-0.985 - 0.167i$
Analytic cond. $3.41120$
Root an. cond. $1.84694$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.95 + 2.69i)2-s + (−1.60 + 4.94i)3-s + (1.52 + 4.68i)4-s + (6.63 − 4.81i)5-s + (−10.1 − 13.9i)6-s + (−71.1 + 23.1i)7-s + (−66.2 − 21.5i)8-s + (−21.8 − 15.8i)9-s + 27.2i·10-s + (118. − 25.9i)11-s − 25.6·12-s + (−135. + 186. i)13-s + (76.9 − 236. i)14-s + (13.1 + 40.5i)15-s + (123. − 89.8i)16-s + (106. + 146. i)17-s + ⋯
L(s)  = 1  + (−0.488 + 0.673i)2-s + (−0.178 + 0.549i)3-s + (0.0951 + 0.292i)4-s + (0.265 − 0.192i)5-s + (−0.282 − 0.388i)6-s + (−1.45 + 0.472i)7-s + (−1.03 − 0.336i)8-s + (−0.269 − 0.195i)9-s + 0.272i·10-s + (0.976 − 0.214i)11-s − 0.177·12-s + (−0.801 + 1.10i)13-s + (0.392 − 1.20i)14-s + (0.0585 + 0.180i)15-s + (0.483 − 0.351i)16-s + (0.368 + 0.506i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.167i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.985 - 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.985 - 0.167i$
Analytic conductor: \(3.41120\)
Root analytic conductor: \(1.84694\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :2),\ -0.985 - 0.167i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.0635732 + 0.755998i\)
\(L(\frac12)\) \(\approx\) \(0.0635732 + 0.755998i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.60 - 4.94i)T \)
11 \( 1 + (-118. + 25.9i)T \)
good2 \( 1 + (1.95 - 2.69i)T + (-4.94 - 15.2i)T^{2} \)
5 \( 1 + (-6.63 + 4.81i)T + (193. - 594. i)T^{2} \)
7 \( 1 + (71.1 - 23.1i)T + (1.94e3 - 1.41e3i)T^{2} \)
13 \( 1 + (135. - 186. i)T + (-8.82e3 - 2.71e4i)T^{2} \)
17 \( 1 + (-106. - 146. i)T + (-2.58e4 + 7.94e4i)T^{2} \)
19 \( 1 + (-436. - 141. i)T + (1.05e5 + 7.66e4i)T^{2} \)
23 \( 1 - 331.T + 2.79e5T^{2} \)
29 \( 1 + (1.15e3 - 375. i)T + (5.72e5 - 4.15e5i)T^{2} \)
31 \( 1 + (-675. - 490. i)T + (2.85e5 + 8.78e5i)T^{2} \)
37 \( 1 + (378. + 1.16e3i)T + (-1.51e6 + 1.10e6i)T^{2} \)
41 \( 1 + (-2.03e3 - 662. i)T + (2.28e6 + 1.66e6i)T^{2} \)
43 \( 1 - 630. iT - 3.41e6T^{2} \)
47 \( 1 + (-372. + 1.14e3i)T + (-3.94e6 - 2.86e6i)T^{2} \)
53 \( 1 + (-470. - 341. i)T + (2.43e6 + 7.50e6i)T^{2} \)
59 \( 1 + (-148. - 458. i)T + (-9.80e6 + 7.12e6i)T^{2} \)
61 \( 1 + (3.02e3 + 4.16e3i)T + (-4.27e6 + 1.31e7i)T^{2} \)
67 \( 1 - 3.90e3T + 2.01e7T^{2} \)
71 \( 1 + (-391. + 284. i)T + (7.85e6 - 2.41e7i)T^{2} \)
73 \( 1 + (4.47e3 - 1.45e3i)T + (2.29e7 - 1.66e7i)T^{2} \)
79 \( 1 + (449. - 618. i)T + (-1.20e7 - 3.70e7i)T^{2} \)
83 \( 1 + (3.89e3 + 5.36e3i)T + (-1.46e7 + 4.51e7i)T^{2} \)
89 \( 1 + 1.24e4T + 6.27e7T^{2} \)
97 \( 1 + (-1.17e4 - 8.53e3i)T + (2.73e7 + 8.41e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.59099850061866683624221024150, −15.74339445672546715544101299769, −14.46211092746531288694165273247, −12.72945861197886000074330589805, −11.70333102194713110105476639463, −9.562107629536172285618724647832, −9.139460697295686937259502185063, −7.11576016984359396511878313407, −5.89532682801646410066646177608, −3.45928707731563507794541270256, 0.64920208463748389258230889326, 2.90103498331536407313049266182, 5.89299589812705026870193076122, 7.20064944546125155266582384646, 9.423860433625767989540136610794, 10.12501701932583893049994473065, 11.62006869535340210912503792159, 12.71583454024168492900539565497, 14.01413450611854163997640985323, 15.41231121671457935411532559732

Graph of the $Z$-function along the critical line