Properties

Label 2-33-33.2-c3-0-1
Degree $2$
Conductor $33$
Sign $-0.777 - 0.628i$
Analytic cond. $1.94706$
Root an. cond. $1.39537$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.448 + 1.37i)2-s + (−5.12 + 0.866i)3-s + (4.76 + 3.46i)4-s + (−14.6 + 4.75i)5-s + (1.10 − 7.45i)6-s + (−7.94 + 10.9i)7-s + (−16.3 + 11.8i)8-s + (25.4 − 8.88i)9-s − 22.3i·10-s + (36.2 − 4.26i)11-s + (−27.4 − 13.6i)12-s + (21.5 + 6.99i)13-s + (−11.5 − 15.8i)14-s + (70.8 − 37.0i)15-s + (5.53 + 17.0i)16-s + (27.3 + 84.0i)17-s + ⋯
L(s)  = 1  + (−0.158 + 0.487i)2-s + (−0.985 + 0.166i)3-s + (0.596 + 0.433i)4-s + (−1.30 + 0.425i)5-s + (0.0749 − 0.507i)6-s + (−0.428 + 0.590i)7-s + (−0.720 + 0.523i)8-s + (0.944 − 0.328i)9-s − 0.705i·10-s + (0.993 − 0.116i)11-s + (−0.660 − 0.327i)12-s + (0.459 + 0.149i)13-s + (−0.219 − 0.302i)14-s + (1.21 − 0.637i)15-s + (0.0864 + 0.266i)16-s + (0.389 + 1.19i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.777 - 0.628i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.777 - 0.628i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.777 - 0.628i$
Analytic conductor: \(1.94706\)
Root analytic conductor: \(1.39537\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :3/2),\ -0.777 - 0.628i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.226482 + 0.640506i\)
\(L(\frac12)\) \(\approx\) \(0.226482 + 0.640506i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (5.12 - 0.866i)T \)
11 \( 1 + (-36.2 + 4.26i)T \)
good2 \( 1 + (0.448 - 1.37i)T + (-6.47 - 4.70i)T^{2} \)
5 \( 1 + (14.6 - 4.75i)T + (101. - 73.4i)T^{2} \)
7 \( 1 + (7.94 - 10.9i)T + (-105. - 326. i)T^{2} \)
13 \( 1 + (-21.5 - 6.99i)T + (1.77e3 + 1.29e3i)T^{2} \)
17 \( 1 + (-27.3 - 84.0i)T + (-3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (60.6 + 83.4i)T + (-2.11e3 + 6.52e3i)T^{2} \)
23 \( 1 - 42.7iT - 1.21e4T^{2} \)
29 \( 1 + (-6.11 - 4.44i)T + (7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (67.5 - 207. i)T + (-2.41e4 - 1.75e4i)T^{2} \)
37 \( 1 + (-251. - 182. i)T + (1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (-268. + 195. i)T + (2.12e4 - 6.55e4i)T^{2} \)
43 \( 1 + 419. iT - 7.95e4T^{2} \)
47 \( 1 + (100. + 137. i)T + (-3.20e4 + 9.87e4i)T^{2} \)
53 \( 1 + (-329. - 107. i)T + (1.20e5 + 8.75e4i)T^{2} \)
59 \( 1 + (-30.0 + 41.3i)T + (-6.34e4 - 1.95e5i)T^{2} \)
61 \( 1 + (-52.8 + 17.1i)T + (1.83e5 - 1.33e5i)T^{2} \)
67 \( 1 + 5.78T + 3.00e5T^{2} \)
71 \( 1 + (69.3 - 22.5i)T + (2.89e5 - 2.10e5i)T^{2} \)
73 \( 1 + (170. - 234. i)T + (-1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (-605. - 196. i)T + (3.98e5 + 2.89e5i)T^{2} \)
83 \( 1 + (360. + 1.10e3i)T + (-4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 - 1.31e3iT - 7.04e5T^{2} \)
97 \( 1 + (-189. + 582. i)T + (-7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.55849161286916433659779169139, −15.62915681842492704145240196559, −14.99385931712383447228294211264, −12.54815534590761984095353356834, −11.72775410020177208681464996971, −10.85631472886570803285443125324, −8.726240789898010649372932459612, −7.15662512792549060479879571745, −6.14181679904339010542330058739, −3.77597883681779662834918237450, 0.74872092527057335419796482555, 4.08186175877099187669032469588, 6.22535341990677789546060922261, 7.54718721635890403825427721670, 9.709699981301694943122131578552, 11.08780518985144746790431474374, 11.78946442380984703164012673014, 12.77530349902044628574773549301, 14.80144591564140971782689261592, 16.19651541648292020255777260973

Graph of the $Z$-function along the critical line