Properties

Label 16-2e40-1.1-c1e8-0-0
Degree $16$
Conductor $1.100\times 10^{12}$
Sign $1$
Analytic cond. $1.81725\times 10^{-5}$
Root an. cond. $0.505491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 4·3-s + 10·4-s + 16·6-s − 8·7-s − 20·8-s + 8·9-s + 4·11-s − 40·12-s − 8·13-s + 32·14-s + 34·16-s − 32·18-s + 4·19-s + 32·21-s − 16·22-s − 8·23-s + 80·24-s − 4·25-s + 32·26-s − 12·27-s − 80·28-s + 32·31-s − 56·32-s − 16·33-s + 80·36-s − 8·37-s + ⋯
L(s)  = 1  − 2.82·2-s − 2.30·3-s + 5·4-s + 6.53·6-s − 3.02·7-s − 7.07·8-s + 8/3·9-s + 1.20·11-s − 11.5·12-s − 2.21·13-s + 8.55·14-s + 17/2·16-s − 7.54·18-s + 0.917·19-s + 6.98·21-s − 3.41·22-s − 1.66·23-s + 16.3·24-s − 4/5·25-s + 6.27·26-s − 2.30·27-s − 15.1·28-s + 5.74·31-s − 9.89·32-s − 2.78·33-s + 40/3·36-s − 1.31·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{40}\)
Sign: $1$
Analytic conductor: \(1.81725\times 10^{-5}\)
Root analytic conductor: \(0.505491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{40} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.01252259439\)
\(L(\frac12)\) \(\approx\) \(0.01252259439\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T + 3 p T^{2} + p^{2} T^{3} + p T^{4} + p^{3} T^{5} + 3 p^{3} T^{6} + p^{5} T^{7} + p^{4} T^{8} \)
good3 \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + 16 T^{4} + 4 p T^{5} + 8 p T^{6} + 68 T^{7} + 142 T^{8} + 68 p T^{9} + 8 p^{3} T^{10} + 4 p^{4} T^{11} + 16 p^{4} T^{12} + 4 p^{6} T^{13} + 8 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
5 \( ( 1 + 2 T^{2} + 16 T^{3} + 2 T^{4} + 16 p T^{5} + 2 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
7 \( 1 + 8 T + 32 T^{2} + 104 T^{3} + 36 p T^{4} + 8 p^{2} T^{5} + 480 T^{6} + 24 p T^{7} - 26 p^{2} T^{8} + 24 p^{2} T^{9} + 480 p^{2} T^{10} + 8 p^{5} T^{11} + 36 p^{5} T^{12} + 104 p^{5} T^{13} + 32 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 - 4 T + 8 T^{2} + 68 T^{3} - 304 T^{4} + 804 T^{5} + 1304 T^{6} - 7396 T^{7} + 43982 T^{8} - 7396 p T^{9} + 1304 p^{2} T^{10} + 804 p^{3} T^{11} - 304 p^{4} T^{12} + 68 p^{5} T^{13} + 8 p^{6} T^{14} - 4 p^{7} T^{15} + p^{8} T^{16} \)
13 \( 1 + 8 T + 36 T^{2} + 8 p T^{3} + 200 T^{4} - 72 T^{5} - 4084 T^{6} - 2632 p T^{7} - 153618 T^{8} - 2632 p^{2} T^{9} - 4084 p^{2} T^{10} - 72 p^{3} T^{11} + 200 p^{4} T^{12} + 8 p^{6} T^{13} + 36 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 - 72 T^{2} + 2620 T^{4} - 64376 T^{6} + 1215110 T^{8} - 64376 p^{2} T^{10} + 2620 p^{4} T^{12} - 72 p^{6} T^{14} + p^{8} T^{16} \)
19 \( 1 - 4 T - 8 T^{2} - 28 T^{3} + 336 T^{4} - 1308 T^{5} + 14056 T^{6} - 28228 T^{7} - 115058 T^{8} - 28228 p T^{9} + 14056 p^{2} T^{10} - 1308 p^{3} T^{11} + 336 p^{4} T^{12} - 28 p^{5} T^{13} - 8 p^{6} T^{14} - 4 p^{7} T^{15} + p^{8} T^{16} \)
23 \( 1 + 8 T + 32 T^{2} + 200 T^{3} + 2108 T^{4} + 11560 T^{5} + 45024 T^{6} + 277224 T^{7} + 1704454 T^{8} + 277224 p T^{9} + 45024 p^{2} T^{10} + 11560 p^{3} T^{11} + 2108 p^{4} T^{12} + 200 p^{5} T^{13} + 32 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
29 \( 1 - 12 T^{2} - 64 T^{3} + 72 T^{4} + 4416 T^{5} + 14140 T^{6} - 57344 T^{7} - 693650 T^{8} - 57344 p T^{9} + 14140 p^{2} T^{10} + 4416 p^{3} T^{11} + 72 p^{4} T^{12} - 64 p^{5} T^{13} - 12 p^{6} T^{14} + p^{8} T^{16} \)
31 \( ( 1 - 8 T + 70 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{4} \)
37 \( 1 + 8 T - 44 T^{2} - 760 T^{3} - 1272 T^{4} + 22872 T^{5} + 112156 T^{6} - 219496 T^{7} - 4000082 T^{8} - 219496 p T^{9} + 112156 p^{2} T^{10} + 22872 p^{3} T^{11} - 1272 p^{4} T^{12} - 760 p^{5} T^{13} - 44 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
41 \( 1 - 8 T + 32 T^{2} - 88 T^{3} + 1788 T^{4} - 23048 T^{5} + 131040 T^{6} - 18264 p T^{7} + 2278 p^{2} T^{8} - 18264 p^{2} T^{9} + 131040 p^{2} T^{10} - 23048 p^{3} T^{11} + 1788 p^{4} T^{12} - 88 p^{5} T^{13} + 32 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
43 \( 1 + 12 T + 56 T^{2} - 604 T^{3} - 8560 T^{4} - 59644 T^{5} - 32984 T^{6} + 2234540 T^{7} + 25213774 T^{8} + 2234540 p T^{9} - 32984 p^{2} T^{10} - 59644 p^{3} T^{11} - 8560 p^{4} T^{12} - 604 p^{5} T^{13} + 56 p^{6} T^{14} + 12 p^{7} T^{15} + p^{8} T^{16} \)
47 \( 1 - 312 T^{2} + 44348 T^{4} - 3794696 T^{6} + 215798406 T^{8} - 3794696 p^{2} T^{10} + 44348 p^{4} T^{12} - 312 p^{6} T^{14} + p^{8} T^{16} \)
53 \( 1 - 8 T + 100 T^{2} - 8 p T^{3} + 3016 T^{4} - 19768 T^{5} + 118540 T^{6} - 2296472 T^{7} + 11779502 T^{8} - 2296472 p T^{9} + 118540 p^{2} T^{10} - 19768 p^{3} T^{11} + 3016 p^{4} T^{12} - 8 p^{6} T^{13} + 100 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 + 20 T + 136 T^{2} - 1124 T^{3} - 27632 T^{4} - 217412 T^{5} - 194408 T^{6} + 12195572 T^{7} + 142178894 T^{8} + 12195572 p T^{9} - 194408 p^{2} T^{10} - 217412 p^{3} T^{11} - 27632 p^{4} T^{12} - 1124 p^{5} T^{13} + 136 p^{6} T^{14} + 20 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 - 24 T + 132 T^{2} + 648 T^{3} + 72 T^{4} - 138600 T^{5} + 1067820 T^{6} - 2497416 T^{7} + 88430 T^{8} - 2497416 p T^{9} + 1067820 p^{2} T^{10} - 138600 p^{3} T^{11} + 72 p^{4} T^{12} + 648 p^{5} T^{13} + 132 p^{6} T^{14} - 24 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 + 36 T + 504 T^{2} + 2652 T^{3} - 10800 T^{4} - 217380 T^{5} - 1006488 T^{6} - 637596 T^{7} + 11635982 T^{8} - 637596 p T^{9} - 1006488 p^{2} T^{10} - 217380 p^{3} T^{11} - 10800 p^{4} T^{12} + 2652 p^{5} T^{13} + 504 p^{6} T^{14} + 36 p^{7} T^{15} + p^{8} T^{16} \)
71 \( 1 + 24 T + 288 T^{2} + 2904 T^{3} + 21308 T^{4} + 62712 T^{5} - 415008 T^{6} - 11818440 T^{7} - 144298362 T^{8} - 11818440 p T^{9} - 415008 p^{2} T^{10} + 62712 p^{3} T^{11} + 21308 p^{4} T^{12} + 2904 p^{5} T^{13} + 288 p^{6} T^{14} + 24 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 + 32 T + 512 T^{2} + 96 p T^{3} + 95708 T^{4} + 1109024 T^{5} + 11042304 T^{6} + 107800160 T^{7} + 989395590 T^{8} + 107800160 p T^{9} + 11042304 p^{2} T^{10} + 1109024 p^{3} T^{11} + 95708 p^{4} T^{12} + 96 p^{6} T^{13} + 512 p^{6} T^{14} + 32 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 - 120 T^{2} + 10940 T^{4} + 170552 T^{6} - 23710074 T^{8} + 170552 p^{2} T^{10} + 10940 p^{4} T^{12} - 120 p^{6} T^{14} + p^{8} T^{16} \)
83 \( 1 - 20 T + 184 T^{2} - 2684 T^{3} + 37008 T^{4} - 337916 T^{5} + 3624872 T^{6} - 38211284 T^{7} + 335969678 T^{8} - 38211284 p T^{9} + 3624872 p^{2} T^{10} - 337916 p^{3} T^{11} + 37008 p^{4} T^{12} - 2684 p^{5} T^{13} + 184 p^{6} T^{14} - 20 p^{7} T^{15} + p^{8} T^{16} \)
89 \( 1 + 16 T + 128 T^{2} + 2096 T^{3} + 18652 T^{4} - 22640 T^{5} - 553088 T^{6} - 12396240 T^{7} - 224072442 T^{8} - 12396240 p T^{9} - 553088 p^{2} T^{10} - 22640 p^{3} T^{11} + 18652 p^{4} T^{12} + 2096 p^{5} T^{13} + 128 p^{6} T^{14} + 16 p^{7} T^{15} + p^{8} T^{16} \)
97 \( ( 1 - 16 T + 428 T^{2} - 4368 T^{3} + 63222 T^{4} - 4368 p T^{5} + 428 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.615721821083829182468653933697, −8.340579096666816766094023682827, −8.272089070586141363937390501569, −7.72735097554307607334510753929, −7.57790062811542124808616291238, −7.51718548353460830738786687037, −7.43248478488102221700541271466, −7.10000703682061649031630814747, −6.83252945163110722676922109156, −6.71070073792761251293521555067, −6.53469146775854751516330082994, −6.16220400041491996203972656184, −6.16041836783475513489727383420, −6.03542308789259743903214383662, −5.98790928137720585457857927396, −5.50476891258354297994161463185, −5.30786678338673466944267923995, −4.62719857476648949303599725849, −4.53522746091494322441245469800, −4.45272389521002682795052947765, −3.82778364066925301051582187499, −3.14701352631460913060268324442, −3.06014740097946193535272357069, −2.82074860538497551180743379716, −1.96593319095310802704015827057, 1.96593319095310802704015827057, 2.82074860538497551180743379716, 3.06014740097946193535272357069, 3.14701352631460913060268324442, 3.82778364066925301051582187499, 4.45272389521002682795052947765, 4.53522746091494322441245469800, 4.62719857476648949303599725849, 5.30786678338673466944267923995, 5.50476891258354297994161463185, 5.98790928137720585457857927396, 6.03542308789259743903214383662, 6.16041836783475513489727383420, 6.16220400041491996203972656184, 6.53469146775854751516330082994, 6.71070073792761251293521555067, 6.83252945163110722676922109156, 7.10000703682061649031630814747, 7.43248478488102221700541271466, 7.51718548353460830738786687037, 7.57790062811542124808616291238, 7.72735097554307607334510753929, 8.272089070586141363937390501569, 8.340579096666816766094023682827, 8.615721821083829182468653933697

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.