Properties

Label 8-30e4-1.1-c1e4-0-0
Degree $8$
Conductor $810000$
Sign $1$
Analytic cond. $0.00329301$
Root an. cond. $0.489439$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 4·7-s + 8·9-s − 16-s + 16·21-s − 8·25-s − 12·27-s − 8·31-s + 24·37-s + 24·43-s + 4·48-s + 8·49-s − 24·61-s − 32·63-s − 16·67-s − 20·73-s + 32·75-s + 23·81-s + 32·93-s + 12·97-s + 4·103-s − 96·111-s + 4·112-s + 40·121-s + 127-s − 96·129-s + 131-s + ⋯
L(s)  = 1  − 2.30·3-s − 1.51·7-s + 8/3·9-s − 1/4·16-s + 3.49·21-s − 8/5·25-s − 2.30·27-s − 1.43·31-s + 3.94·37-s + 3.65·43-s + 0.577·48-s + 8/7·49-s − 3.07·61-s − 4.03·63-s − 1.95·67-s − 2.34·73-s + 3.69·75-s + 23/9·81-s + 3.31·93-s + 1.21·97-s + 0.394·103-s − 9.11·111-s + 0.377·112-s + 3.63·121-s + 0.0887·127-s − 8.45·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(810000\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(0.00329301\)
Root analytic conductor: \(0.489439\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 810000,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1351980439\)
\(L(\frac12)\) \(\approx\) \(0.1351980439\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
good7$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 16 T^{2} + p^{2} T^{4} )( 1 + 16 T^{2} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 158 T^{4} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 - 56 T^{2} + p^{2} T^{4} )( 1 + 56 T^{2} + p^{2} T^{4} ) \)
59$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 13294 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 170 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08387053589197631022679088028, −12.50343930246193362992094011565, −12.23668530395967147757095350018, −11.82289643901955104567121587191, −11.80062970170223287271475144603, −11.23367415944945866485573438577, −10.90862461343976034762190192532, −10.76674121723936565168200091958, −10.45471285693397489650266968309, −9.863472261309497591897124211760, −9.526070664807416336095550719717, −9.281829984004021987354363144779, −9.142985922861602836403785620908, −8.279743490344514498393476746399, −7.50373221530796780404781154817, −7.49688463317062462469160487759, −7.18222877076189872125708170246, −6.16709329434069627483400906865, −6.10595906160915434301636909297, −5.90669421672407264250503282656, −5.74767439564106201635358380998, −4.56412421266750816989800627129, −4.50368004225802633236355559239, −3.72172360716998279227991014408, −2.68850278398652390264720053394, 2.68850278398652390264720053394, 3.72172360716998279227991014408, 4.50368004225802633236355559239, 4.56412421266750816989800627129, 5.74767439564106201635358380998, 5.90669421672407264250503282656, 6.10595906160915434301636909297, 6.16709329434069627483400906865, 7.18222877076189872125708170246, 7.49688463317062462469160487759, 7.50373221530796780404781154817, 8.279743490344514498393476746399, 9.142985922861602836403785620908, 9.281829984004021987354363144779, 9.526070664807416336095550719717, 9.863472261309497591897124211760, 10.45471285693397489650266968309, 10.76674121723936565168200091958, 10.90862461343976034762190192532, 11.23367415944945866485573438577, 11.80062970170223287271475144603, 11.82289643901955104567121587191, 12.23668530395967147757095350018, 12.50343930246193362992094011565, 13.08387053589197631022679088028

Graph of the $Z$-function along the critical line