Properties

Label 4-5e4-1.1-c7e2-0-2
Degree $4$
Conductor $625$
Sign $1$
Analytic cond. $60.9902$
Root an. cond. $2.79457$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15·2-s + 40·3-s + 75·4-s + 600·6-s − 600·7-s + 795·8-s − 2.52e3·9-s + 4.34e3·11-s + 3.00e3·12-s + 1.76e4·13-s − 9.00e3·14-s + 1.30e4·16-s + 6.87e3·17-s − 3.78e4·18-s + 1.82e4·19-s − 2.40e4·21-s + 6.51e4·22-s + 2.11e4·23-s + 3.18e4·24-s + 2.65e5·26-s − 1.78e5·27-s − 4.50e4·28-s + 5.58e4·29-s − 3.01e5·31-s − 2.46e4·32-s + 1.73e5·33-s + 1.03e5·34-s + ⋯
L(s)  = 1  + 1.32·2-s + 0.855·3-s + 0.585·4-s + 1.13·6-s − 0.661·7-s + 0.548·8-s − 1.15·9-s + 0.984·11-s + 0.501·12-s + 2.23·13-s − 0.876·14-s + 0.799·16-s + 0.339·17-s − 1.53·18-s + 0.608·19-s − 0.565·21-s + 1.30·22-s + 0.361·23-s + 0.469·24-s + 2.95·26-s − 1.74·27-s − 0.387·28-s + 0.424·29-s − 1.81·31-s − 0.132·32-s + 0.841·33-s + 0.449·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(625\)    =    \(5^{4}\)
Sign: $1$
Analytic conductor: \(60.9902\)
Root analytic conductor: \(2.79457\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 625,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(5.915926421\)
\(L(\frac12)\) \(\approx\) \(5.915926421\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
good2$D_{4}$ \( 1 - 15 T + 75 p T^{2} - 15 p^{7} T^{3} + p^{14} T^{4} \)
3$D_{4}$ \( 1 - 40 T + 1375 p T^{2} - 40 p^{7} T^{3} + p^{14} T^{4} \)
7$D_{4}$ \( 1 + 600 T + 592250 T^{2} + 600 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 - 4344 T + 33551301 T^{2} - 4344 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 - 1360 p T + 176633850 T^{2} - 1360 p^{8} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 - 6870 T + 752062875 T^{2} - 6870 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 - 18200 T + 1670645253 T^{2} - 18200 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 - 21120 T - 431976950 T^{2} - 21120 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 - 55800 T + 7178799018 T^{2} - 55800 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 + 301776 T + 74506854266 T^{2} + 301776 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 - 609860 T + 262289383950 T^{2} - 609860 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 + 2646 p T + 391801850811 T^{2} + 2646 p^{8} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 - 966400 T + 711647085750 T^{2} - 966400 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 - 38040 p T + 1782082095150 T^{2} - 38040 p^{8} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 - 130740 T + 2038893798750 T^{2} - 130740 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 - 2067600 T + 4803250907238 T^{2} - 2067600 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 - 582044 T - 1843726773474 T^{2} - 582044 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 - 255720 T + 11262543795125 T^{2} - 255720 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 + 4728216 T + 23373621952446 T^{2} + 4728216 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 + 1339430 T + 21386673483675 T^{2} + 1339430 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 7186200 T + 50054286054218 T^{2} + 7186200 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 - 12049560 T + 89789116985725 T^{2} - 12049560 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 + 5990850 T + 65725956363283 T^{2} + 5990850 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 + 17120020 T + 232426185762150 T^{2} + 17120020 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.31845651099133721360820333849, −15.51518151933933341231219317522, −14.55218128236128044839113501202, −14.45041124524007586912210027017, −13.77942353725980860137404566346, −13.35562242036575649682662563033, −12.86144526156551222849648386674, −11.93888218892642804884787299832, −11.20308232999855585134129311290, −10.70974293031736466494808325503, −9.281635666233924401419681334715, −9.009660049507735027659767635658, −8.150319843154841174117151732876, −7.15603504233198576598314518168, −5.89989530664947875835339378986, −5.70731033312829797868603045237, −4.04318090648680426860868469488, −3.67412521933221315571864002149, −2.73539118290749789693889009186, −1.11290665408138109805161856361, 1.11290665408138109805161856361, 2.73539118290749789693889009186, 3.67412521933221315571864002149, 4.04318090648680426860868469488, 5.70731033312829797868603045237, 5.89989530664947875835339378986, 7.15603504233198576598314518168, 8.150319843154841174117151732876, 9.009660049507735027659767635658, 9.281635666233924401419681334715, 10.70974293031736466494808325503, 11.20308232999855585134129311290, 11.93888218892642804884787299832, 12.86144526156551222849648386674, 13.35562242036575649682662563033, 13.77942353725980860137404566346, 14.45041124524007586912210027017, 14.55218128236128044839113501202, 15.51518151933933341231219317522, 16.31845651099133721360820333849

Graph of the $Z$-function along the critical line