Properties

Label 2-5e2-25.9-c3-0-4
Degree $2$
Conductor $25$
Sign $0.615 + 0.788i$
Analytic cond. $1.47504$
Root an. cond. $1.21451$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.81 − 2.49i)2-s + (3.16 − 1.02i)3-s + (−0.466 − 1.43i)4-s + (−10.8 + 2.62i)5-s + (3.17 − 9.76i)6-s − 5.10i·7-s + (19.0 + 6.18i)8-s + (−12.8 + 9.34i)9-s + (−13.1 + 31.8i)10-s + (−9.41 − 6.84i)11-s + (−2.95 − 4.06i)12-s + (27.9 + 38.4i)13-s + (−12.7 − 9.24i)14-s + (−31.7 + 19.5i)15-s + (59.7 − 43.3i)16-s + (−80.1 − 26.0i)17-s + ⋯
L(s)  = 1  + (0.640 − 0.882i)2-s + (0.609 − 0.198i)3-s + (−0.0583 − 0.179i)4-s + (−0.971 + 0.235i)5-s + (0.215 − 0.664i)6-s − 0.275i·7-s + (0.841 + 0.273i)8-s + (−0.476 + 0.346i)9-s + (−0.415 + 1.00i)10-s + (−0.258 − 0.187i)11-s + (−0.0711 − 0.0979i)12-s + (0.595 + 0.819i)13-s + (−0.243 − 0.176i)14-s + (−0.546 + 0.335i)15-s + (0.932 − 0.677i)16-s + (−1.14 − 0.371i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25\)    =    \(5^{2}\)
Sign: $0.615 + 0.788i$
Analytic conductor: \(1.47504\)
Root analytic conductor: \(1.21451\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{25} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 25,\ (\ :3/2),\ 0.615 + 0.788i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.45040 - 0.707529i\)
\(L(\frac12)\) \(\approx\) \(1.45040 - 0.707529i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (10.8 - 2.62i)T \)
good2 \( 1 + (-1.81 + 2.49i)T + (-2.47 - 7.60i)T^{2} \)
3 \( 1 + (-3.16 + 1.02i)T + (21.8 - 15.8i)T^{2} \)
7 \( 1 + 5.10iT - 343T^{2} \)
11 \( 1 + (9.41 + 6.84i)T + (411. + 1.26e3i)T^{2} \)
13 \( 1 + (-27.9 - 38.4i)T + (-678. + 2.08e3i)T^{2} \)
17 \( 1 + (80.1 + 26.0i)T + (3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (-32.9 + 101. i)T + (-5.54e3 - 4.03e3i)T^{2} \)
23 \( 1 + (-26.0 + 35.7i)T + (-3.75e3 - 1.15e4i)T^{2} \)
29 \( 1 + (69.8 + 214. i)T + (-1.97e4 + 1.43e4i)T^{2} \)
31 \( 1 + (50.5 - 155. i)T + (-2.41e4 - 1.75e4i)T^{2} \)
37 \( 1 + (-76.3 - 105. i)T + (-1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (110. - 80.6i)T + (2.12e4 - 6.55e4i)T^{2} \)
43 \( 1 - 414. iT - 7.95e4T^{2} \)
47 \( 1 + (-510. + 165. i)T + (8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (-422. + 137. i)T + (1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (654. - 475. i)T + (6.34e4 - 1.95e5i)T^{2} \)
61 \( 1 + (467. + 339. i)T + (7.01e4 + 2.15e5i)T^{2} \)
67 \( 1 + (-129. - 42.1i)T + (2.43e5 + 1.76e5i)T^{2} \)
71 \( 1 + (-179. - 551. i)T + (-2.89e5 + 2.10e5i)T^{2} \)
73 \( 1 + (158. - 217. i)T + (-1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (70.8 + 218. i)T + (-3.98e5 + 2.89e5i)T^{2} \)
83 \( 1 + (833. + 270. i)T + (4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + (1.24e3 + 905. i)T + (2.17e5 + 6.70e5i)T^{2} \)
97 \( 1 + (-3.24 + 1.05i)T + (7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.79910515153735256906000895584, −15.49631209335835430620826485611, −13.97897170023821567702166593984, −13.22789415859452775149694635511, −11.62318975323176584907838231159, −10.96507976285903168013231332754, −8.679277727152547306100700730624, −7.28975799085845331385742976813, −4.37640831560534788142148813683, −2.78090252359852719958923826954, 3.83445768235635285886017135935, 5.69074498363590169069785005761, 7.52685096585631248907369217595, 8.780655967928470681966137946180, 10.79947042319736663466663007745, 12.49864382064714886562923903838, 13.85036335957888546333482066935, 15.15426988551899579338704661593, 15.49215210001495430860344366634, 16.81560020776193371320831471308

Graph of the $Z$-function along the critical line