Properties

Label 2-5e2-25.9-c3-0-2
Degree $2$
Conductor $25$
Sign $0.430 - 0.902i$
Analytic cond. $1.47504$
Root an. cond. $1.21451$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.23 + 3.07i)2-s + (8.89 − 2.89i)3-s + (−2.00 − 6.16i)4-s + (−3.48 + 10.6i)5-s + (−11.0 + 33.8i)6-s − 4.54i·7-s + (−5.47 − 1.77i)8-s + (48.9 − 35.5i)9-s + (−24.9 − 34.4i)10-s + (10.9 + 7.94i)11-s + (−35.6 − 49.1i)12-s + (−40.2 − 55.3i)13-s + (14.0 + 10.1i)14-s + (−0.265 + 104. i)15-s + (59.7 − 43.3i)16-s + (−35.1 − 11.4i)17-s + ⋯
L(s)  = 1  + (−0.790 + 1.08i)2-s + (1.71 − 0.556i)3-s + (−0.250 − 0.771i)4-s + (−0.311 + 0.950i)5-s + (−0.748 + 2.30i)6-s − 0.245i·7-s + (−0.241 − 0.0786i)8-s + (1.81 − 1.31i)9-s + (−0.788 − 1.09i)10-s + (0.299 + 0.217i)11-s + (−0.858 − 1.18i)12-s + (−0.858 − 1.18i)13-s + (0.267 + 0.194i)14-s + (−0.00456 + 1.80i)15-s + (0.933 − 0.677i)16-s + (−0.501 − 0.163i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.430 - 0.902i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.430 - 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25\)    =    \(5^{2}\)
Sign: $0.430 - 0.902i$
Analytic conductor: \(1.47504\)
Root analytic conductor: \(1.21451\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{25} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 25,\ (\ :3/2),\ 0.430 - 0.902i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.995761 + 0.628392i\)
\(L(\frac12)\) \(\approx\) \(0.995761 + 0.628392i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (3.48 - 10.6i)T \)
good2 \( 1 + (2.23 - 3.07i)T + (-2.47 - 7.60i)T^{2} \)
3 \( 1 + (-8.89 + 2.89i)T + (21.8 - 15.8i)T^{2} \)
7 \( 1 + 4.54iT - 343T^{2} \)
11 \( 1 + (-10.9 - 7.94i)T + (411. + 1.26e3i)T^{2} \)
13 \( 1 + (40.2 + 55.3i)T + (-678. + 2.08e3i)T^{2} \)
17 \( 1 + (35.1 + 11.4i)T + (3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (-0.479 + 1.47i)T + (-5.54e3 - 4.03e3i)T^{2} \)
23 \( 1 + (-0.969 + 1.33i)T + (-3.75e3 - 1.15e4i)T^{2} \)
29 \( 1 + (-49.0 - 151. i)T + (-1.97e4 + 1.43e4i)T^{2} \)
31 \( 1 + (83.6 - 257. i)T + (-2.41e4 - 1.75e4i)T^{2} \)
37 \( 1 + (-81.9 - 112. i)T + (-1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (-80.5 + 58.5i)T + (2.12e4 - 6.55e4i)T^{2} \)
43 \( 1 + 135. iT - 7.95e4T^{2} \)
47 \( 1 + (171. - 55.5i)T + (8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (303. - 98.5i)T + (1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (119. - 86.4i)T + (6.34e4 - 1.95e5i)T^{2} \)
61 \( 1 + (-180. - 131. i)T + (7.01e4 + 2.15e5i)T^{2} \)
67 \( 1 + (-842. - 273. i)T + (2.43e5 + 1.76e5i)T^{2} \)
71 \( 1 + (163. + 503. i)T + (-2.89e5 + 2.10e5i)T^{2} \)
73 \( 1 + (210. - 289. i)T + (-1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (243. + 750. i)T + (-3.98e5 + 2.89e5i)T^{2} \)
83 \( 1 + (855. + 277. i)T + (4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + (-68.1 - 49.4i)T + (2.17e5 + 6.70e5i)T^{2} \)
97 \( 1 + (-851. + 276. i)T + (7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.60238324761301021043307853169, −15.74442775747938334098711626425, −14.89781640456995538364223914745, −14.17916274583340393822545320171, −12.57018464124040685138226802964, −10.09853915275566794157064958309, −8.756549415279338481648401331442, −7.62123157486148577402218502506, −6.89968040184411503218847977811, −3.07662505604683658042321496622, 2.19502570510917796133452587709, 4.12174438086467098700793093211, 8.054730186583226078695297165860, 9.130632484041134975084128511007, 9.686730154729834633008953261009, 11.52955857274077150514068726300, 12.95323561883219326226108704963, 14.39653720128968829670795483597, 15.55095502826326490681479830469, 16.94704846828321445784833729683

Graph of the $Z$-function along the critical line