Properties

Label 2-5e2-25.11-c3-0-6
Degree $2$
Conductor $25$
Sign $0.583 + 0.812i$
Analytic cond. $1.47504$
Root an. cond. $1.21451$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.92 − 1.39i)2-s + (1.98 − 6.11i)3-s + (−0.729 + 2.24i)4-s + (−10.2 + 4.41i)5-s + (−4.71 − 14.5i)6-s + 25.3·7-s + (7.60 + 23.3i)8-s + (−11.6 − 8.43i)9-s + (−13.5 + 22.8i)10-s + (−19.6 + 14.2i)11-s + (12.2 + 8.92i)12-s + (−67.4 − 49.0i)13-s + (48.6 − 35.3i)14-s + (6.56 + 71.5i)15-s + (31.9 + 23.2i)16-s + (12.7 + 39.3i)17-s + ⋯
L(s)  = 1  + (0.679 − 0.493i)2-s + (0.382 − 1.17i)3-s + (−0.0912 + 0.280i)4-s + (−0.918 + 0.394i)5-s + (−0.321 − 0.987i)6-s + 1.36·7-s + (0.336 + 1.03i)8-s + (−0.429 − 0.312i)9-s + (−0.429 + 0.721i)10-s + (−0.538 + 0.391i)11-s + (0.295 + 0.214i)12-s + (−1.43 − 1.04i)13-s + (0.929 − 0.675i)14-s + (0.113 + 1.23i)15-s + (0.499 + 0.363i)16-s + (0.182 + 0.561i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.583 + 0.812i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.583 + 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25\)    =    \(5^{2}\)
Sign: $0.583 + 0.812i$
Analytic conductor: \(1.47504\)
Root analytic conductor: \(1.21451\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{25} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 25,\ (\ :3/2),\ 0.583 + 0.812i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.39657 - 0.716459i\)
\(L(\frac12)\) \(\approx\) \(1.39657 - 0.716459i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (10.2 - 4.41i)T \)
good2 \( 1 + (-1.92 + 1.39i)T + (2.47 - 7.60i)T^{2} \)
3 \( 1 + (-1.98 + 6.11i)T + (-21.8 - 15.8i)T^{2} \)
7 \( 1 - 25.3T + 343T^{2} \)
11 \( 1 + (19.6 - 14.2i)T + (411. - 1.26e3i)T^{2} \)
13 \( 1 + (67.4 + 49.0i)T + (678. + 2.08e3i)T^{2} \)
17 \( 1 + (-12.7 - 39.3i)T + (-3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (19.0 + 58.5i)T + (-5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 + (36.6 - 26.6i)T + (3.75e3 - 1.15e4i)T^{2} \)
29 \( 1 + (-2.63 + 8.10i)T + (-1.97e4 - 1.43e4i)T^{2} \)
31 \( 1 + (22.6 + 69.7i)T + (-2.41e4 + 1.75e4i)T^{2} \)
37 \( 1 + (-120. - 87.6i)T + (1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (-133. - 97.0i)T + (2.12e4 + 6.55e4i)T^{2} \)
43 \( 1 - 356.T + 7.95e4T^{2} \)
47 \( 1 + (62.2 - 191. i)T + (-8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (-47.0 + 144. i)T + (-1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (659. + 479. i)T + (6.34e4 + 1.95e5i)T^{2} \)
61 \( 1 + (381. - 277. i)T + (7.01e4 - 2.15e5i)T^{2} \)
67 \( 1 + (-65.2 - 200. i)T + (-2.43e5 + 1.76e5i)T^{2} \)
71 \( 1 + (31.0 - 95.5i)T + (-2.89e5 - 2.10e5i)T^{2} \)
73 \( 1 + (-944. + 686. i)T + (1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (225. - 694. i)T + (-3.98e5 - 2.89e5i)T^{2} \)
83 \( 1 + (-255. - 785. i)T + (-4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + (-870. + 632. i)T + (2.17e5 - 6.70e5i)T^{2} \)
97 \( 1 + (-58.4 + 179. i)T + (-7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.36070890345921576762815753613, −15.13407978862334720092639706436, −14.24489032915357039621248036668, −12.86803696745336430059176613871, −12.12612913961710530201663121308, −10.91542710396395776536060231026, −7.964861615682010864936579145180, −7.64721009249513642286886875862, −4.72193956675949852351654842003, −2.50640875087208887765173888047, 4.24942184566986523247578851266, 5.03241553339331816613948492158, 7.61820190463999420915171221661, 9.233283566602964067293413271690, 10.70078816978957335518940246897, 12.19409418227957506450810901500, 14.20313109512466237460603973712, 14.75901035746001860401134190798, 15.77409106245202966339824031207, 16.68565659417767862409443560172

Graph of the $Z$-function along the critical line