Properties

Label 2-23-23.21-c2-0-1
Degree $2$
Conductor $23$
Sign $0.988 - 0.150i$
Analytic cond. $0.626704$
Root an. cond. $0.791646$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.20 + 0.777i)2-s + (−0.238 − 1.66i)3-s + (−0.802 − 1.75i)4-s + (−2.65 + 9.04i)5-s + (1.00 − 2.19i)6-s + (−5.31 − 4.60i)7-s + (1.21 − 8.44i)8-s + (5.93 − 1.74i)9-s + (−10.2 + 8.87i)10-s + (1.86 + 2.90i)11-s + (−2.72 + 1.75i)12-s + (7.08 + 8.18i)13-s + (−2.84 − 9.70i)14-s + (15.6 + 2.24i)15-s + (2.97 − 3.43i)16-s + (−8.16 − 3.72i)17-s + ⋯
L(s)  = 1  + (0.604 + 0.388i)2-s + (−0.0795 − 0.553i)3-s + (−0.200 − 0.439i)4-s + (−0.531 + 1.80i)5-s + (0.167 − 0.365i)6-s + (−0.759 − 0.657i)7-s + (0.151 − 1.05i)8-s + (0.659 − 0.193i)9-s + (−1.02 + 0.887i)10-s + (0.169 + 0.263i)11-s + (−0.227 + 0.145i)12-s + (0.545 + 0.629i)13-s + (−0.203 − 0.693i)14-s + (1.04 + 0.149i)15-s + (0.185 − 0.214i)16-s + (−0.480 − 0.219i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.150i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.988 - 0.150i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23\)
Sign: $0.988 - 0.150i$
Analytic conductor: \(0.626704\)
Root analytic conductor: \(0.791646\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{23} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 23,\ (\ :1),\ 0.988 - 0.150i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.02910 + 0.0777361i\)
\(L(\frac12)\) \(\approx\) \(1.02910 + 0.0777361i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 + (-22.4 + 4.93i)T \)
good2 \( 1 + (-1.20 - 0.777i)T + (1.66 + 3.63i)T^{2} \)
3 \( 1 + (0.238 + 1.66i)T + (-8.63 + 2.53i)T^{2} \)
5 \( 1 + (2.65 - 9.04i)T + (-21.0 - 13.5i)T^{2} \)
7 \( 1 + (5.31 + 4.60i)T + (6.97 + 48.5i)T^{2} \)
11 \( 1 + (-1.86 - 2.90i)T + (-50.2 + 110. i)T^{2} \)
13 \( 1 + (-7.08 - 8.18i)T + (-24.0 + 167. i)T^{2} \)
17 \( 1 + (8.16 + 3.72i)T + (189. + 218. i)T^{2} \)
19 \( 1 + (3.35 - 1.53i)T + (236. - 272. i)T^{2} \)
29 \( 1 + (10.2 - 22.4i)T + (-550. - 635. i)T^{2} \)
31 \( 1 + (1.70 - 11.8i)T + (-922. - 270. i)T^{2} \)
37 \( 1 + (3.28 + 11.2i)T + (-1.15e3 + 740. i)T^{2} \)
41 \( 1 + (-25.6 - 7.54i)T + (1.41e3 + 908. i)T^{2} \)
43 \( 1 + (16.9 - 2.44i)T + (1.77e3 - 520. i)T^{2} \)
47 \( 1 + 40.2T + 2.20e3T^{2} \)
53 \( 1 + (12.2 + 10.6i)T + (399. + 2.78e3i)T^{2} \)
59 \( 1 + (-37.3 - 43.0i)T + (-495. + 3.44e3i)T^{2} \)
61 \( 1 + (-100. - 14.5i)T + (3.57e3 + 1.04e3i)T^{2} \)
67 \( 1 + (-64.9 + 101. i)T + (-1.86e3 - 4.08e3i)T^{2} \)
71 \( 1 + (-79.3 - 50.9i)T + (2.09e3 + 4.58e3i)T^{2} \)
73 \( 1 + (-4.06 - 8.89i)T + (-3.48e3 + 4.02e3i)T^{2} \)
79 \( 1 + (63.5 - 55.0i)T + (888. - 6.17e3i)T^{2} \)
83 \( 1 + (7.26 + 24.7i)T + (-5.79e3 + 3.72e3i)T^{2} \)
89 \( 1 + (53.1 - 7.63i)T + (7.60e3 - 2.23e3i)T^{2} \)
97 \( 1 + (5.80 - 19.7i)T + (-7.91e3 - 5.08e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.08574853755615813828213365520, −16.04908408318019978721523954709, −15.00786521742152882701929632541, −14.02371930051774131368399299284, −12.91441550770227919566723078528, −11.07597662770785211394998317904, −9.890854185767907591882634875005, −6.98324800515773236837257844223, −6.65592999625005866327429411815, −3.82868077097028001470722994646, 3.93490285097925138220162514775, 5.23852155342581675172634755309, 8.264486604279009806358102101927, 9.341243657512377384185349602664, 11.45619937184023491734597617777, 12.82142817576058278949916828538, 13.10229271140146896930675743647, 15.44965873046576662875930630313, 16.26013842630526219164371168931, 17.27841163781643898500807201751

Graph of the $Z$-function along the critical line