Properties

Label 2-22-11.3-c3-0-0
Degree $2$
Conductor $22$
Sign $0.982 - 0.187i$
Analytic cond. $1.29804$
Root an. cond. $1.13931$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.61 − 1.17i)2-s + (2.64 + 8.12i)3-s + (1.23 − 3.80i)4-s + (−10.3 − 7.48i)5-s + (13.8 + 10.0i)6-s + (7.24 − 22.3i)7-s + (−2.47 − 7.60i)8-s + (−37.2 + 27.0i)9-s − 25.4·10-s + (−3.69 + 36.2i)11-s + 34.1·12-s + (−9.27 + 6.73i)13-s + (−14.4 − 44.6i)14-s + (33.6 − 103. i)15-s + (−12.9 − 9.40i)16-s + (52.9 + 38.5i)17-s + ⋯
L(s)  = 1  + (0.572 − 0.415i)2-s + (0.508 + 1.56i)3-s + (0.154 − 0.475i)4-s + (−0.921 − 0.669i)5-s + (0.940 + 0.683i)6-s + (0.391 − 1.20i)7-s + (−0.109 − 0.336i)8-s + (−1.37 + 1.00i)9-s − 0.805·10-s + (−0.101 + 0.994i)11-s + 0.822·12-s + (−0.197 + 0.143i)13-s + (−0.276 − 0.851i)14-s + (0.578 − 1.78i)15-s + (−0.202 − 0.146i)16-s + (0.756 + 0.549i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.187i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.982 - 0.187i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(22\)    =    \(2 \cdot 11\)
Sign: $0.982 - 0.187i$
Analytic conductor: \(1.29804\)
Root analytic conductor: \(1.13931\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{22} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 22,\ (\ :3/2),\ 0.982 - 0.187i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.46851 + 0.139106i\)
\(L(\frac12)\) \(\approx\) \(1.46851 + 0.139106i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.61 + 1.17i)T \)
11 \( 1 + (3.69 - 36.2i)T \)
good3 \( 1 + (-2.64 - 8.12i)T + (-21.8 + 15.8i)T^{2} \)
5 \( 1 + (10.3 + 7.48i)T + (38.6 + 118. i)T^{2} \)
7 \( 1 + (-7.24 + 22.3i)T + (-277. - 201. i)T^{2} \)
13 \( 1 + (9.27 - 6.73i)T + (678. - 2.08e3i)T^{2} \)
17 \( 1 + (-52.9 - 38.5i)T + (1.51e3 + 4.67e3i)T^{2} \)
19 \( 1 + (2.24 + 6.89i)T + (-5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 + 104.T + 1.21e4T^{2} \)
29 \( 1 + (39.3 - 121. i)T + (-1.97e4 - 1.43e4i)T^{2} \)
31 \( 1 + (-233. + 169. i)T + (9.20e3 - 2.83e4i)T^{2} \)
37 \( 1 + (26.3 - 81.2i)T + (-4.09e4 - 2.97e4i)T^{2} \)
41 \( 1 + (41.8 + 128. i)T + (-5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 - 353.T + 7.95e4T^{2} \)
47 \( 1 + (41.5 + 128. i)T + (-8.39e4 + 6.10e4i)T^{2} \)
53 \( 1 + (405. - 294. i)T + (4.60e4 - 1.41e5i)T^{2} \)
59 \( 1 + (-201. + 619. i)T + (-1.66e5 - 1.20e5i)T^{2} \)
61 \( 1 + (295. + 215. i)T + (7.01e4 + 2.15e5i)T^{2} \)
67 \( 1 + 294.T + 3.00e5T^{2} \)
71 \( 1 + (107. + 77.8i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-145. + 446. i)T + (-3.14e5 - 2.28e5i)T^{2} \)
79 \( 1 + (330. - 239. i)T + (1.52e5 - 4.68e5i)T^{2} \)
83 \( 1 + (-1.09e3 - 799. i)T + (1.76e5 + 5.43e5i)T^{2} \)
89 \( 1 + 260.T + 7.04e5T^{2} \)
97 \( 1 + (1.14e3 - 831. i)T + (2.82e5 - 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.11678320107260991577745086854, −16.01658358390686157830831115439, −15.04729612948247917659406567298, −13.99733360190087296919988055990, −12.23816710967871922496994421460, −10.74991367147899407513172985048, −9.726698556761715444130582992579, −7.931538838213455941251650101620, −4.68985297667322811981123857566, −3.90984967770940474486673319475, 2.87928150513178740951327685236, 6.01124755013911372474612167340, 7.54063715403432348854756224300, 8.419504813096985549378070924759, 11.59280781308044609981474328437, 12.29778520273756866983536395200, 13.77275429335399216464026987839, 14.70335721688984096085401876945, 15.89907952099138465069666035170, 17.84720920597659943333311155277

Graph of the $Z$-function along the critical line