Properties

Label 24-208e12-1.1-c11e12-0-1
Degree $24$
Conductor $6.558\times 10^{27}$
Sign $1$
Analytic cond. $2.77602\times 10^{26}$
Root an. cond. $12.6418$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 488·3-s − 6.16e5·9-s + 3.20e6·13-s + 1.21e7·17-s − 5.81e6·23-s + 2.96e8·25-s − 3.50e8·27-s − 2.44e8·29-s + 1.56e9·39-s − 2.29e9·43-s + 1.00e10·49-s + 5.95e9·51-s − 4.60e9·53-s − 1.37e10·61-s − 2.83e9·69-s + 1.44e11·75-s − 1.80e10·79-s + 1.17e11·81-s − 1.19e11·87-s + 4.87e11·101-s + 1.71e10·103-s + 2.82e11·107-s − 1.06e12·113-s − 1.97e12·117-s + 1.42e12·121-s + 127-s − 1.11e12·129-s + ⋯
L(s)  = 1  + 1.15·3-s − 3.48·9-s + 2.39·13-s + 2.08·17-s − 0.188·23-s + 6.06·25-s − 4.70·27-s − 2.21·29-s + 2.77·39-s − 2.38·43-s + 5.09·49-s + 2.41·51-s − 1.51·53-s − 2.08·61-s − 0.218·69-s + 7.02·75-s − 0.659·79-s + 3.74·81-s − 2.56·87-s + 4.61·101-s + 0.145·103-s + 1.94·107-s − 5.46·113-s − 8.34·117-s + 5.00·121-s − 2.75·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(12-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s+11/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(2^{48} \cdot 13^{12}\)
Sign: $1$
Analytic conductor: \(2.77602\times 10^{26}\)
Root analytic conductor: \(12.6418\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 2^{48} \cdot 13^{12} ,\ ( \ : [11/2]^{12} ),\ 1 )\)

Particular Values

\(L(6)\) \(\approx\) \(46.24772325\)
\(L(\frac12)\) \(\approx\) \(46.24772325\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 246836 p T + 336416330 p^{3} T^{2} + 33972109021932 p^{5} T^{3} - 289815087133718528 p^{7} T^{4} - 86095928318880858112 p^{10} T^{5} + \)\(97\!\cdots\!80\)\( p^{15} T^{6} - 86095928318880858112 p^{21} T^{7} - 289815087133718528 p^{29} T^{8} + 33972109021932 p^{38} T^{9} + 336416330 p^{47} T^{10} - 246836 p^{56} T^{11} + p^{66} T^{12} \)
good3 \( ( 1 - 244 T + 1636 p^{5} T^{2} - 9613376 p^{2} T^{3} + 1338661844 p^{4} T^{4} - 30477119284 p^{6} T^{5} + 3708080134390 p^{8} T^{6} - 30477119284 p^{17} T^{7} + 1338661844 p^{26} T^{8} - 9613376 p^{35} T^{9} + 1636 p^{49} T^{10} - 244 p^{55} T^{11} + p^{66} T^{12} )^{2} \)
5 \( 1 - 296019944 T^{2} + 1924876342772288 p^{2} T^{4} - \)\(86\!\cdots\!48\)\( p^{4} T^{6} + \)\(29\!\cdots\!88\)\( p^{6} T^{8} - \)\(79\!\cdots\!08\)\( p^{8} T^{10} + \)\(17\!\cdots\!74\)\( p^{10} T^{12} - \)\(79\!\cdots\!08\)\( p^{30} T^{14} + \)\(29\!\cdots\!88\)\( p^{50} T^{16} - \)\(86\!\cdots\!48\)\( p^{70} T^{18} + 1924876342772288 p^{90} T^{20} - 296019944 p^{110} T^{22} + p^{132} T^{24} \)
7 \( 1 - 1439593080 p T^{2} + 7513387543617322488 p T^{4} - \)\(17\!\cdots\!60\)\( T^{6} + \)\(91\!\cdots\!04\)\( p^{2} T^{8} - \)\(38\!\cdots\!92\)\( p^{4} T^{10} + \)\(15\!\cdots\!26\)\( p^{6} T^{12} - \)\(38\!\cdots\!92\)\( p^{26} T^{14} + \)\(91\!\cdots\!04\)\( p^{46} T^{16} - \)\(17\!\cdots\!60\)\( p^{66} T^{18} + 7513387543617322488 p^{89} T^{20} - 1439593080 p^{111} T^{22} + p^{132} T^{24} \)
11 \( 1 - 1429047020516 T^{2} + \)\(11\!\cdots\!30\)\( T^{4} - \)\(68\!\cdots\!16\)\( T^{6} + \)\(31\!\cdots\!63\)\( T^{8} - \)\(11\!\cdots\!08\)\( T^{10} + \)\(36\!\cdots\!72\)\( T^{12} - \)\(11\!\cdots\!08\)\( p^{22} T^{14} + \)\(31\!\cdots\!63\)\( p^{44} T^{16} - \)\(68\!\cdots\!16\)\( p^{66} T^{18} + \)\(11\!\cdots\!30\)\( p^{88} T^{20} - 1429047020516 p^{110} T^{22} + p^{132} T^{24} \)
17 \( ( 1 - 6099384 T + 65714447623728 T^{2} - \)\(60\!\cdots\!64\)\( T^{3} + \)\(40\!\cdots\!32\)\( T^{4} - \)\(25\!\cdots\!56\)\( T^{5} + \)\(19\!\cdots\!02\)\( T^{6} - \)\(25\!\cdots\!56\)\( p^{11} T^{7} + \)\(40\!\cdots\!32\)\( p^{22} T^{8} - \)\(60\!\cdots\!64\)\( p^{33} T^{9} + 65714447623728 p^{44} T^{10} - 6099384 p^{55} T^{11} + p^{66} T^{12} )^{2} \)
19 \( 1 - 554101967186196 T^{2} + \)\(19\!\cdots\!22\)\( T^{4} - \)\(46\!\cdots\!60\)\( T^{6} + \)\(89\!\cdots\!75\)\( T^{8} - \)\(13\!\cdots\!28\)\( T^{10} + \)\(17\!\cdots\!12\)\( T^{12} - \)\(13\!\cdots\!28\)\( p^{22} T^{14} + \)\(89\!\cdots\!75\)\( p^{44} T^{16} - \)\(46\!\cdots\!60\)\( p^{66} T^{18} + \)\(19\!\cdots\!22\)\( p^{88} T^{20} - 554101967186196 p^{110} T^{22} + p^{132} T^{24} \)
23 \( ( 1 + 2905296 T + 4052545647748770 T^{2} - \)\(11\!\cdots\!44\)\( T^{3} + \)\(72\!\cdots\!75\)\( T^{4} - \)\(45\!\cdots\!44\)\( T^{5} + \)\(82\!\cdots\!80\)\( T^{6} - \)\(45\!\cdots\!44\)\( p^{11} T^{7} + \)\(72\!\cdots\!75\)\( p^{22} T^{8} - \)\(11\!\cdots\!44\)\( p^{33} T^{9} + 4052545647748770 p^{44} T^{10} + 2905296 p^{55} T^{11} + p^{66} T^{12} )^{2} \)
29 \( ( 1 + 122231556 T + 52401806364164466 T^{2} + \)\(68\!\cdots\!76\)\( T^{3} + \)\(13\!\cdots\!55\)\( T^{4} + \)\(15\!\cdots\!44\)\( T^{5} + \)\(20\!\cdots\!96\)\( T^{6} + \)\(15\!\cdots\!44\)\( p^{11} T^{7} + \)\(13\!\cdots\!55\)\( p^{22} T^{8} + \)\(68\!\cdots\!76\)\( p^{33} T^{9} + 52401806364164466 p^{44} T^{10} + 122231556 p^{55} T^{11} + p^{66} T^{12} )^{2} \)
31 \( 1 - 157944828788449044 T^{2} + \)\(12\!\cdots\!18\)\( T^{4} - \)\(67\!\cdots\!16\)\( T^{6} + \)\(27\!\cdots\!67\)\( T^{8} - \)\(91\!\cdots\!92\)\( T^{10} + \)\(25\!\cdots\!12\)\( T^{12} - \)\(91\!\cdots\!92\)\( p^{22} T^{14} + \)\(27\!\cdots\!67\)\( p^{44} T^{16} - \)\(67\!\cdots\!16\)\( p^{66} T^{18} + \)\(12\!\cdots\!18\)\( p^{88} T^{20} - 157944828788449044 p^{110} T^{22} + p^{132} T^{24} \)
37 \( 1 - 1287952664424930744 T^{2} + \)\(83\!\cdots\!16\)\( T^{4} - \)\(36\!\cdots\!40\)\( T^{6} + \)\(11\!\cdots\!76\)\( T^{8} - \)\(29\!\cdots\!52\)\( T^{10} + \)\(58\!\cdots\!94\)\( T^{12} - \)\(29\!\cdots\!52\)\( p^{22} T^{14} + \)\(11\!\cdots\!76\)\( p^{44} T^{16} - \)\(36\!\cdots\!40\)\( p^{66} T^{18} + \)\(83\!\cdots\!16\)\( p^{88} T^{20} - 1287952664424930744 p^{110} T^{22} + p^{132} T^{24} \)
41 \( 1 - 2849426385631088492 T^{2} + \)\(48\!\cdots\!82\)\( T^{4} - \)\(58\!\cdots\!60\)\( T^{6} + \)\(54\!\cdots\!71\)\( T^{8} - \)\(40\!\cdots\!28\)\( T^{10} + \)\(24\!\cdots\!12\)\( T^{12} - \)\(40\!\cdots\!28\)\( p^{22} T^{14} + \)\(54\!\cdots\!71\)\( p^{44} T^{16} - \)\(58\!\cdots\!60\)\( p^{66} T^{18} + \)\(48\!\cdots\!82\)\( p^{88} T^{20} - 2849426385631088492 p^{110} T^{22} + p^{132} T^{24} \)
43 \( ( 1 + 1147259988 T + 3438686199343149828 T^{2} + \)\(39\!\cdots\!68\)\( T^{3} + \)\(63\!\cdots\!56\)\( T^{4} + \)\(57\!\cdots\!88\)\( T^{5} + \)\(75\!\cdots\!94\)\( T^{6} + \)\(57\!\cdots\!88\)\( p^{11} T^{7} + \)\(63\!\cdots\!56\)\( p^{22} T^{8} + \)\(39\!\cdots\!68\)\( p^{33} T^{9} + 3438686199343149828 p^{44} T^{10} + 1147259988 p^{55} T^{11} + p^{66} T^{12} )^{2} \)
47 \( 1 - 16240051799917962008 T^{2} + \)\(13\!\cdots\!84\)\( T^{4} - \)\(79\!\cdots\!72\)\( T^{6} + \)\(34\!\cdots\!20\)\( T^{8} - \)\(11\!\cdots\!04\)\( T^{10} + \)\(32\!\cdots\!10\)\( T^{12} - \)\(11\!\cdots\!04\)\( p^{22} T^{14} + \)\(34\!\cdots\!20\)\( p^{44} T^{16} - \)\(79\!\cdots\!72\)\( p^{66} T^{18} + \)\(13\!\cdots\!84\)\( p^{88} T^{20} - 16240051799917962008 p^{110} T^{22} + p^{132} T^{24} \)
53 \( ( 1 + 2301031380 T + 29660125066996927962 T^{2} + \)\(94\!\cdots\!76\)\( T^{3} + \)\(44\!\cdots\!47\)\( T^{4} + \)\(16\!\cdots\!80\)\( T^{5} + \)\(47\!\cdots\!20\)\( T^{6} + \)\(16\!\cdots\!80\)\( p^{11} T^{7} + \)\(44\!\cdots\!47\)\( p^{22} T^{8} + \)\(94\!\cdots\!76\)\( p^{33} T^{9} + 29660125066996927962 p^{44} T^{10} + 2301031380 p^{55} T^{11} + p^{66} T^{12} )^{2} \)
59 \( 1 - \)\(20\!\cdots\!00\)\( T^{2} + \)\(18\!\cdots\!14\)\( T^{4} - \)\(84\!\cdots\!08\)\( T^{6} + \)\(18\!\cdots\!39\)\( T^{8} + \)\(70\!\cdots\!32\)\( T^{10} - \)\(13\!\cdots\!96\)\( T^{12} + \)\(70\!\cdots\!32\)\( p^{22} T^{14} + \)\(18\!\cdots\!39\)\( p^{44} T^{16} - \)\(84\!\cdots\!08\)\( p^{66} T^{18} + \)\(18\!\cdots\!14\)\( p^{88} T^{20} - \)\(20\!\cdots\!00\)\( p^{110} T^{22} + p^{132} T^{24} \)
61 \( ( 1 + 6887824972 T + \)\(20\!\cdots\!90\)\( T^{2} + \)\(12\!\cdots\!00\)\( T^{3} + \)\(18\!\cdots\!83\)\( T^{4} + \)\(92\!\cdots\!24\)\( T^{5} + \)\(10\!\cdots\!00\)\( T^{6} + \)\(92\!\cdots\!24\)\( p^{11} T^{7} + \)\(18\!\cdots\!83\)\( p^{22} T^{8} + \)\(12\!\cdots\!00\)\( p^{33} T^{9} + \)\(20\!\cdots\!90\)\( p^{44} T^{10} + 6887824972 p^{55} T^{11} + p^{66} T^{12} )^{2} \)
67 \( 1 - \)\(10\!\cdots\!64\)\( T^{2} + \)\(54\!\cdots\!62\)\( T^{4} - \)\(17\!\cdots\!64\)\( T^{6} + \)\(42\!\cdots\!23\)\( T^{8} - \)\(75\!\cdots\!68\)\( T^{10} + \)\(10\!\cdots\!28\)\( T^{12} - \)\(75\!\cdots\!68\)\( p^{22} T^{14} + \)\(42\!\cdots\!23\)\( p^{44} T^{16} - \)\(17\!\cdots\!64\)\( p^{66} T^{18} + \)\(54\!\cdots\!62\)\( p^{88} T^{20} - \)\(10\!\cdots\!64\)\( p^{110} T^{22} + p^{132} T^{24} \)
71 \( 1 - \)\(23\!\cdots\!80\)\( T^{2} + \)\(25\!\cdots\!80\)\( T^{4} - \)\(17\!\cdots\!44\)\( T^{6} + \)\(82\!\cdots\!28\)\( T^{8} - \)\(29\!\cdots\!16\)\( T^{10} + \)\(77\!\cdots\!02\)\( T^{12} - \)\(29\!\cdots\!16\)\( p^{22} T^{14} + \)\(82\!\cdots\!28\)\( p^{44} T^{16} - \)\(17\!\cdots\!44\)\( p^{66} T^{18} + \)\(25\!\cdots\!80\)\( p^{88} T^{20} - \)\(23\!\cdots\!80\)\( p^{110} T^{22} + p^{132} T^{24} \)
73 \( 1 - 25272084132351987996 p T^{2} + \)\(16\!\cdots\!74\)\( T^{4} - \)\(10\!\cdots\!72\)\( T^{6} + \)\(48\!\cdots\!35\)\( T^{8} - \)\(19\!\cdots\!24\)\( T^{10} + \)\(67\!\cdots\!40\)\( T^{12} - \)\(19\!\cdots\!24\)\( p^{22} T^{14} + \)\(48\!\cdots\!35\)\( p^{44} T^{16} - \)\(10\!\cdots\!72\)\( p^{66} T^{18} + \)\(16\!\cdots\!74\)\( p^{88} T^{20} - 25272084132351987996 p^{111} T^{22} + p^{132} T^{24} \)
79 \( ( 1 + 9023048648 T + \)\(32\!\cdots\!86\)\( T^{2} + \)\(12\!\cdots\!72\)\( T^{3} + \)\(45\!\cdots\!67\)\( T^{4} + \)\(22\!\cdots\!24\)\( T^{5} + \)\(40\!\cdots\!12\)\( T^{6} + \)\(22\!\cdots\!24\)\( p^{11} T^{7} + \)\(45\!\cdots\!67\)\( p^{22} T^{8} + \)\(12\!\cdots\!72\)\( p^{33} T^{9} + \)\(32\!\cdots\!86\)\( p^{44} T^{10} + 9023048648 p^{55} T^{11} + p^{66} T^{12} )^{2} \)
83 \( 1 - \)\(75\!\cdots\!48\)\( T^{2} + \)\(31\!\cdots\!50\)\( T^{4} - \)\(89\!\cdots\!16\)\( T^{6} + \)\(19\!\cdots\!51\)\( T^{8} - \)\(33\!\cdots\!32\)\( T^{10} + \)\(47\!\cdots\!16\)\( T^{12} - \)\(33\!\cdots\!32\)\( p^{22} T^{14} + \)\(19\!\cdots\!51\)\( p^{44} T^{16} - \)\(89\!\cdots\!16\)\( p^{66} T^{18} + \)\(31\!\cdots\!50\)\( p^{88} T^{20} - \)\(75\!\cdots\!48\)\( p^{110} T^{22} + p^{132} T^{24} \)
89 \( 1 - \)\(15\!\cdots\!12\)\( T^{2} + \)\(11\!\cdots\!34\)\( T^{4} - \)\(23\!\cdots\!64\)\( T^{6} + \)\(17\!\cdots\!83\)\( T^{8} - \)\(23\!\cdots\!00\)\( T^{10} + \)\(12\!\cdots\!96\)\( T^{12} - \)\(23\!\cdots\!00\)\( p^{22} T^{14} + \)\(17\!\cdots\!83\)\( p^{44} T^{16} - \)\(23\!\cdots\!64\)\( p^{66} T^{18} + \)\(11\!\cdots\!34\)\( p^{88} T^{20} - \)\(15\!\cdots\!12\)\( p^{110} T^{22} + p^{132} T^{24} \)
97 \( 1 - \)\(39\!\cdots\!52\)\( T^{2} + \)\(70\!\cdots\!74\)\( T^{4} - \)\(72\!\cdots\!56\)\( T^{6} + \)\(47\!\cdots\!43\)\( T^{8} - \)\(20\!\cdots\!24\)\( T^{10} + \)\(90\!\cdots\!64\)\( T^{12} - \)\(20\!\cdots\!24\)\( p^{22} T^{14} + \)\(47\!\cdots\!43\)\( p^{44} T^{16} - \)\(72\!\cdots\!56\)\( p^{66} T^{18} + \)\(70\!\cdots\!74\)\( p^{88} T^{20} - \)\(39\!\cdots\!52\)\( p^{110} T^{22} + p^{132} T^{24} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.49560702995211645017569600378, −2.39090395873555070073563448304, −2.37567929099915709413711837588, −2.26466950353022771412278108676, −2.24338567477648227669263712765, −1.95516733904526264102300638715, −1.91885361849282356644681371218, −1.76758757614183296191731692749, −1.76298471739045569459718448585, −1.60189103009303736006779546102, −1.43701221252521954307457415373, −1.24778426317118709529413927406, −1.21064996113730865426177200874, −1.19407485009768741753868861578, −1.15878962138221562208562623851, −1.08101181271596242414978509926, −0.884007212342040051325929143478, −0.790144450309655265110296881997, −0.57190935804418472820385893557, −0.55829878897004531873240587455, −0.51167911060906972741251189218, −0.44635923297323275714441791052, −0.28560215659644501384452108422, −0.18925308307208090095735925584, −0.14082572863996775430499467651, 0.14082572863996775430499467651, 0.18925308307208090095735925584, 0.28560215659644501384452108422, 0.44635923297323275714441791052, 0.51167911060906972741251189218, 0.55829878897004531873240587455, 0.57190935804418472820385893557, 0.790144450309655265110296881997, 0.884007212342040051325929143478, 1.08101181271596242414978509926, 1.15878962138221562208562623851, 1.19407485009768741753868861578, 1.21064996113730865426177200874, 1.24778426317118709529413927406, 1.43701221252521954307457415373, 1.60189103009303736006779546102, 1.76298471739045569459718448585, 1.76758757614183296191731692749, 1.91885361849282356644681371218, 1.95516733904526264102300638715, 2.24338567477648227669263712765, 2.26466950353022771412278108676, 2.37567929099915709413711837588, 2.39090395873555070073563448304, 2.49560702995211645017569600378

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.