Properties

Label 2-2013-1.1-c3-0-237
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.36·2-s + 3·3-s + 20.7·4-s + 8.46·5-s + 16.0·6-s − 8.07·7-s + 68.3·8-s + 9·9-s + 45.3·10-s − 11·11-s + 62.2·12-s + 32.0·13-s − 43.2·14-s + 25.3·15-s + 200.·16-s + 52.4·17-s + 48.2·18-s − 19.0·19-s + 175.·20-s − 24.2·21-s − 58.9·22-s + 16.8·23-s + 205.·24-s − 53.4·25-s + 171.·26-s + 27·27-s − 167.·28-s + ⋯
L(s)  = 1  + 1.89·2-s + 0.577·3-s + 2.59·4-s + 0.756·5-s + 1.09·6-s − 0.436·7-s + 3.02·8-s + 0.333·9-s + 1.43·10-s − 0.301·11-s + 1.49·12-s + 0.682·13-s − 0.826·14-s + 0.436·15-s + 3.13·16-s + 0.747·17-s + 0.631·18-s − 0.229·19-s + 1.96·20-s − 0.251·21-s − 0.571·22-s + 0.152·23-s + 1.74·24-s − 0.427·25-s + 1.29·26-s + 0.192·27-s − 1.13·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(12.26672667\)
\(L(\frac12)\) \(\approx\) \(12.26672667\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 5.36T + 8T^{2} \)
5 \( 1 - 8.46T + 125T^{2} \)
7 \( 1 + 8.07T + 343T^{2} \)
13 \( 1 - 32.0T + 2.19e3T^{2} \)
17 \( 1 - 52.4T + 4.91e3T^{2} \)
19 \( 1 + 19.0T + 6.85e3T^{2} \)
23 \( 1 - 16.8T + 1.21e4T^{2} \)
29 \( 1 - 200.T + 2.43e4T^{2} \)
31 \( 1 - 179.T + 2.97e4T^{2} \)
37 \( 1 + 45.3T + 5.06e4T^{2} \)
41 \( 1 + 362.T + 6.89e4T^{2} \)
43 \( 1 + 48.4T + 7.95e4T^{2} \)
47 \( 1 + 251.T + 1.03e5T^{2} \)
53 \( 1 - 209.T + 1.48e5T^{2} \)
59 \( 1 - 302.T + 2.05e5T^{2} \)
67 \( 1 - 1.02e3T + 3.00e5T^{2} \)
71 \( 1 + 448.T + 3.57e5T^{2} \)
73 \( 1 + 216.T + 3.89e5T^{2} \)
79 \( 1 + 85.7T + 4.93e5T^{2} \)
83 \( 1 + 120.T + 5.71e5T^{2} \)
89 \( 1 + 192.T + 7.04e5T^{2} \)
97 \( 1 - 456.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.612479121569325460179564446110, −7.82928523505813392666344775160, −6.74391249546016694720176599583, −6.33567422819529255399127052277, −5.47608478897417363467085888167, −4.77056365499975038122434662016, −3.76401507569865812491056825774, −3.09997710238101752256691367478, −2.31655508840415963419778510092, −1.32949326665475195740155755030, 1.32949326665475195740155755030, 2.31655508840415963419778510092, 3.09997710238101752256691367478, 3.76401507569865812491056825774, 4.77056365499975038122434662016, 5.47608478897417363467085888167, 6.33567422819529255399127052277, 6.74391249546016694720176599583, 7.82928523505813392666344775160, 8.612479121569325460179564446110

Graph of the $Z$-function along the critical line