Properties

Label 2-2013-1.1-c3-0-155
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.32·2-s + 3·3-s + 20.4·4-s − 19.7·5-s + 15.9·6-s + 5.38·7-s + 66.0·8-s + 9·9-s − 105.·10-s − 11·11-s + 61.2·12-s − 16.9·13-s + 28.6·14-s − 59.3·15-s + 188.·16-s + 20.3·17-s + 47.9·18-s + 90.6·19-s − 403.·20-s + 16.1·21-s − 58.6·22-s − 41.7·23-s + 198.·24-s + 266.·25-s − 90.3·26-s + 27·27-s + 109.·28-s + ⋯
L(s)  = 1  + 1.88·2-s + 0.577·3-s + 2.55·4-s − 1.76·5-s + 1.08·6-s + 0.290·7-s + 2.92·8-s + 0.333·9-s − 3.33·10-s − 0.301·11-s + 1.47·12-s − 0.361·13-s + 0.547·14-s − 1.02·15-s + 2.95·16-s + 0.289·17-s + 0.628·18-s + 1.09·19-s − 4.51·20-s + 0.167·21-s − 0.568·22-s − 0.378·23-s + 1.68·24-s + 2.13·25-s − 0.681·26-s + 0.192·27-s + 0.741·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(7.998907231\)
\(L(\frac12)\) \(\approx\) \(7.998907231\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 5.32T + 8T^{2} \)
5 \( 1 + 19.7T + 125T^{2} \)
7 \( 1 - 5.38T + 343T^{2} \)
13 \( 1 + 16.9T + 2.19e3T^{2} \)
17 \( 1 - 20.3T + 4.91e3T^{2} \)
19 \( 1 - 90.6T + 6.85e3T^{2} \)
23 \( 1 + 41.7T + 1.21e4T^{2} \)
29 \( 1 - 103.T + 2.43e4T^{2} \)
31 \( 1 - 122.T + 2.97e4T^{2} \)
37 \( 1 - 424.T + 5.06e4T^{2} \)
41 \( 1 - 435.T + 6.89e4T^{2} \)
43 \( 1 + 211.T + 7.95e4T^{2} \)
47 \( 1 - 72.6T + 1.03e5T^{2} \)
53 \( 1 - 172.T + 1.48e5T^{2} \)
59 \( 1 - 495.T + 2.05e5T^{2} \)
67 \( 1 + 237.T + 3.00e5T^{2} \)
71 \( 1 - 571.T + 3.57e5T^{2} \)
73 \( 1 + 444.T + 3.89e5T^{2} \)
79 \( 1 + 544.T + 4.93e5T^{2} \)
83 \( 1 - 969.T + 5.71e5T^{2} \)
89 \( 1 - 621.T + 7.04e5T^{2} \)
97 \( 1 + 1.38e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.306249879957745254116155314653, −7.73063189678149139387346886047, −7.28175655902063348637949828881, −6.34249939726097292204110838749, −5.25046210106603308379772594758, −4.51051818000018565793418357881, −3.97553561799039066880391241341, −3.14706639819649368359915128103, −2.52442261896631537757064881395, −0.976480761639984143044002078863, 0.976480761639984143044002078863, 2.52442261896631537757064881395, 3.14706639819649368359915128103, 3.97553561799039066880391241341, 4.51051818000018565793418357881, 5.25046210106603308379772594758, 6.34249939726097292204110838749, 7.28175655902063348637949828881, 7.73063189678149139387346886047, 8.306249879957745254116155314653

Graph of the $Z$-function along the critical line