Properties

Label 2-2013-1.1-c3-0-111
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.05·2-s + 3·3-s + 1.30·4-s − 6.41·5-s + 9.15·6-s + 13.3·7-s − 20.4·8-s + 9·9-s − 19.5·10-s − 11·11-s + 3.92·12-s − 14.1·13-s + 40.6·14-s − 19.2·15-s − 72.7·16-s + 25.9·17-s + 27.4·18-s + 149.·19-s − 8.40·20-s + 39.9·21-s − 33.5·22-s − 44.5·23-s − 61.2·24-s − 83.7·25-s − 43.1·26-s + 27·27-s + 17.4·28-s + ⋯
L(s)  = 1  + 1.07·2-s + 0.577·3-s + 0.163·4-s − 0.574·5-s + 0.622·6-s + 0.719·7-s − 0.902·8-s + 0.333·9-s − 0.619·10-s − 0.301·11-s + 0.0944·12-s − 0.302·13-s + 0.776·14-s − 0.331·15-s − 1.13·16-s + 0.370·17-s + 0.359·18-s + 1.80·19-s − 0.0939·20-s + 0.415·21-s − 0.325·22-s − 0.403·23-s − 0.520·24-s − 0.670·25-s − 0.325·26-s + 0.192·27-s + 0.117·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.097827601\)
\(L(\frac12)\) \(\approx\) \(4.097827601\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 3.05T + 8T^{2} \)
5 \( 1 + 6.41T + 125T^{2} \)
7 \( 1 - 13.3T + 343T^{2} \)
13 \( 1 + 14.1T + 2.19e3T^{2} \)
17 \( 1 - 25.9T + 4.91e3T^{2} \)
19 \( 1 - 149.T + 6.85e3T^{2} \)
23 \( 1 + 44.5T + 1.21e4T^{2} \)
29 \( 1 - 124.T + 2.43e4T^{2} \)
31 \( 1 - 289.T + 2.97e4T^{2} \)
37 \( 1 + 316.T + 5.06e4T^{2} \)
41 \( 1 + 283.T + 6.89e4T^{2} \)
43 \( 1 + 70.2T + 7.95e4T^{2} \)
47 \( 1 - 75.7T + 1.03e5T^{2} \)
53 \( 1 - 224.T + 1.48e5T^{2} \)
59 \( 1 - 377.T + 2.05e5T^{2} \)
67 \( 1 + 298.T + 3.00e5T^{2} \)
71 \( 1 - 1.13e3T + 3.57e5T^{2} \)
73 \( 1 - 1.16e3T + 3.89e5T^{2} \)
79 \( 1 - 753.T + 4.93e5T^{2} \)
83 \( 1 - 566.T + 5.71e5T^{2} \)
89 \( 1 - 22.2T + 7.04e5T^{2} \)
97 \( 1 - 870.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.553338230286087292264632904851, −8.052183332687249552610542416653, −7.27842786290346630903952678729, −6.31253809385711657559985424671, −5.14510425049609673126594426117, −4.88608211485663323831434906776, −3.76081121099927283663598398215, −3.23599241014658983663456051061, −2.18056640179247292876508306055, −0.77002720281945495961400659815, 0.77002720281945495961400659815, 2.18056640179247292876508306055, 3.23599241014658983663456051061, 3.76081121099927283663598398215, 4.88608211485663323831434906776, 5.14510425049609673126594426117, 6.31253809385711657559985424671, 7.27842786290346630903952678729, 8.052183332687249552610542416653, 8.553338230286087292264632904851

Graph of the $Z$-function along the critical line