Properties

Label 2-2013-1.1-c3-0-88
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.66·2-s + 3·3-s − 5.22·4-s + 1.88·5-s + 4.99·6-s − 7.36·7-s − 22.0·8-s + 9·9-s + 3.13·10-s − 11·11-s − 15.6·12-s + 81.0·13-s − 12.2·14-s + 5.65·15-s + 5.17·16-s − 42.1·17-s + 14.9·18-s + 56.2·19-s − 9.85·20-s − 22.0·21-s − 18.3·22-s − 38.8·23-s − 66.0·24-s − 121.·25-s + 134.·26-s + 27·27-s + 38.4·28-s + ⋯
L(s)  = 1  + 0.588·2-s + 0.577·3-s − 0.653·4-s + 0.168·5-s + 0.339·6-s − 0.397·7-s − 0.973·8-s + 0.333·9-s + 0.0992·10-s − 0.301·11-s − 0.377·12-s + 1.72·13-s − 0.233·14-s + 0.0973·15-s + 0.0809·16-s − 0.601·17-s + 0.196·18-s + 0.679·19-s − 0.110·20-s − 0.229·21-s − 0.177·22-s − 0.352·23-s − 0.561·24-s − 0.971·25-s + 1.01·26-s + 0.192·27-s + 0.259·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.778364055\)
\(L(\frac12)\) \(\approx\) \(2.778364055\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 1.66T + 8T^{2} \)
5 \( 1 - 1.88T + 125T^{2} \)
7 \( 1 + 7.36T + 343T^{2} \)
13 \( 1 - 81.0T + 2.19e3T^{2} \)
17 \( 1 + 42.1T + 4.91e3T^{2} \)
19 \( 1 - 56.2T + 6.85e3T^{2} \)
23 \( 1 + 38.8T + 1.21e4T^{2} \)
29 \( 1 + 255.T + 2.43e4T^{2} \)
31 \( 1 - 78.6T + 2.97e4T^{2} \)
37 \( 1 - 117.T + 5.06e4T^{2} \)
41 \( 1 - 332.T + 6.89e4T^{2} \)
43 \( 1 + 281.T + 7.95e4T^{2} \)
47 \( 1 - 563.T + 1.03e5T^{2} \)
53 \( 1 + 239.T + 1.48e5T^{2} \)
59 \( 1 - 634.T + 2.05e5T^{2} \)
67 \( 1 - 137.T + 3.00e5T^{2} \)
71 \( 1 + 381.T + 3.57e5T^{2} \)
73 \( 1 + 492.T + 3.89e5T^{2} \)
79 \( 1 + 592.T + 4.93e5T^{2} \)
83 \( 1 - 390.T + 5.71e5T^{2} \)
89 \( 1 - 313.T + 7.04e5T^{2} \)
97 \( 1 - 1.70e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.833080110356945776657790088243, −8.161066728159003429863716066029, −7.27933327872904392714093094965, −6.06155878706198259724777961807, −5.76870771711019923632986960821, −4.55060937782011797098470170241, −3.78881660774196247970442393205, −3.21156068152766354831600854217, −2.00376505185795052243050104210, −0.68209911403999780771433930887, 0.68209911403999780771433930887, 2.00376505185795052243050104210, 3.21156068152766354831600854217, 3.78881660774196247970442393205, 4.55060937782011797098470170241, 5.76870771711019923632986960821, 6.06155878706198259724777961807, 7.27933327872904392714093094965, 8.161066728159003429863716066029, 8.833080110356945776657790088243

Graph of the $Z$-function along the critical line