Properties

Label 2-2013-1.1-c3-0-16
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.170·2-s + 3·3-s − 7.97·4-s − 3.72·5-s + 0.512·6-s − 19.4·7-s − 2.72·8-s + 9·9-s − 0.636·10-s − 11·11-s − 23.9·12-s − 72.7·13-s − 3.31·14-s − 11.1·15-s + 63.3·16-s − 30.9·17-s + 1.53·18-s + 35.2·19-s + 29.6·20-s − 58.3·21-s − 1.87·22-s − 17.9·23-s − 8.18·24-s − 111.·25-s − 12.4·26-s + 27·27-s + 154.·28-s + ⋯
L(s)  = 1  + 0.0603·2-s + 0.577·3-s − 0.996·4-s − 0.333·5-s + 0.0348·6-s − 1.04·7-s − 0.120·8-s + 0.333·9-s − 0.0201·10-s − 0.301·11-s − 0.575·12-s − 1.55·13-s − 0.0633·14-s − 0.192·15-s + 0.989·16-s − 0.441·17-s + 0.0201·18-s + 0.425·19-s + 0.331·20-s − 0.605·21-s − 0.0182·22-s − 0.162·23-s − 0.0696·24-s − 0.888·25-s − 0.0937·26-s + 0.192·27-s + 1.04·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3926954899\)
\(L(\frac12)\) \(\approx\) \(0.3926954899\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 0.170T + 8T^{2} \)
5 \( 1 + 3.72T + 125T^{2} \)
7 \( 1 + 19.4T + 343T^{2} \)
13 \( 1 + 72.7T + 2.19e3T^{2} \)
17 \( 1 + 30.9T + 4.91e3T^{2} \)
19 \( 1 - 35.2T + 6.85e3T^{2} \)
23 \( 1 + 17.9T + 1.21e4T^{2} \)
29 \( 1 + 116.T + 2.43e4T^{2} \)
31 \( 1 + 164.T + 2.97e4T^{2} \)
37 \( 1 + 293.T + 5.06e4T^{2} \)
41 \( 1 + 49.3T + 6.89e4T^{2} \)
43 \( 1 - 174.T + 7.95e4T^{2} \)
47 \( 1 - 43.3T + 1.03e5T^{2} \)
53 \( 1 + 684.T + 1.48e5T^{2} \)
59 \( 1 + 731.T + 2.05e5T^{2} \)
67 \( 1 + 38.9T + 3.00e5T^{2} \)
71 \( 1 - 9.94T + 3.57e5T^{2} \)
73 \( 1 - 591.T + 3.89e5T^{2} \)
79 \( 1 - 17.8T + 4.93e5T^{2} \)
83 \( 1 - 1.18e3T + 5.71e5T^{2} \)
89 \( 1 - 1.35e3T + 7.04e5T^{2} \)
97 \( 1 - 450.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.067565145417953575072335617023, −7.890495142203804600393203566129, −7.51138947151338439179126357074, −6.49231156342525194871840032233, −5.42461346209337268375494794001, −4.68992758939065396075929819056, −3.73713276902048934730042246651, −3.11438222178984040771786228991, −1.96587793963329195093397288177, −0.26383025929639016343740443772, 0.26383025929639016343740443772, 1.96587793963329195093397288177, 3.11438222178984040771786228991, 3.73713276902048934730042246651, 4.68992758939065396075929819056, 5.42461346209337268375494794001, 6.49231156342525194871840032233, 7.51138947151338439179126357074, 7.890495142203804600393203566129, 9.067565145417953575072335617023

Graph of the $Z$-function along the critical line