Properties

Label 2-2013-1.1-c3-0-20
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.16·2-s + 3·3-s − 3.32·4-s + 7.38·5-s − 6.48·6-s − 25.4·7-s + 24.4·8-s + 9·9-s − 15.9·10-s − 11·11-s − 9.98·12-s − 88.8·13-s + 55.0·14-s + 22.1·15-s − 26.2·16-s − 27.5·17-s − 19.4·18-s − 90.6·19-s − 24.5·20-s − 76.3·21-s + 23.7·22-s + 5.00·23-s + 73.4·24-s − 70.4·25-s + 192.·26-s + 27·27-s + 84.7·28-s + ⋯
L(s)  = 1  − 0.764·2-s + 0.577·3-s − 0.416·4-s + 0.660·5-s − 0.441·6-s − 1.37·7-s + 1.08·8-s + 0.333·9-s − 0.504·10-s − 0.301·11-s − 0.240·12-s − 1.89·13-s + 1.05·14-s + 0.381·15-s − 0.410·16-s − 0.393·17-s − 0.254·18-s − 1.09·19-s − 0.274·20-s − 0.793·21-s + 0.230·22-s + 0.0454·23-s + 0.624·24-s − 0.563·25-s + 1.44·26-s + 0.192·27-s + 0.571·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4362458239\)
\(L(\frac12)\) \(\approx\) \(0.4362458239\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 2.16T + 8T^{2} \)
5 \( 1 - 7.38T + 125T^{2} \)
7 \( 1 + 25.4T + 343T^{2} \)
13 \( 1 + 88.8T + 2.19e3T^{2} \)
17 \( 1 + 27.5T + 4.91e3T^{2} \)
19 \( 1 + 90.6T + 6.85e3T^{2} \)
23 \( 1 - 5.00T + 1.21e4T^{2} \)
29 \( 1 + 298.T + 2.43e4T^{2} \)
31 \( 1 - 54.0T + 2.97e4T^{2} \)
37 \( 1 - 349.T + 5.06e4T^{2} \)
41 \( 1 + 200.T + 6.89e4T^{2} \)
43 \( 1 - 124.T + 7.95e4T^{2} \)
47 \( 1 + 549.T + 1.03e5T^{2} \)
53 \( 1 - 625.T + 1.48e5T^{2} \)
59 \( 1 - 244.T + 2.05e5T^{2} \)
67 \( 1 + 36.2T + 3.00e5T^{2} \)
71 \( 1 + 384.T + 3.57e5T^{2} \)
73 \( 1 + 880.T + 3.89e5T^{2} \)
79 \( 1 - 955.T + 4.93e5T^{2} \)
83 \( 1 - 266.T + 5.71e5T^{2} \)
89 \( 1 - 86.8T + 7.04e5T^{2} \)
97 \( 1 - 1.20e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.111010960037767852976520014431, −8.091434930003709037897970287811, −7.39565521246756783410648368953, −6.65915614118959371977928920468, −5.66273298084152084199422716068, −4.68384324411551333750877628747, −3.79784369224719311045376645783, −2.61190069744333862407106593494, −1.93615935649450117584772605142, −0.31315686806178016617257021672, 0.31315686806178016617257021672, 1.93615935649450117584772605142, 2.61190069744333862407106593494, 3.79784369224719311045376645783, 4.68384324411551333750877628747, 5.66273298084152084199422716068, 6.65915614118959371977928920468, 7.39565521246756783410648368953, 8.091434930003709037897970287811, 9.111010960037767852976520014431

Graph of the $Z$-function along the critical line