Properties

Label 2-2013-1.1-c3-0-145
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.98·2-s + 3·3-s + 0.905·4-s + 18.2·5-s − 8.95·6-s − 1.48·7-s + 21.1·8-s + 9·9-s − 54.5·10-s − 11·11-s + 2.71·12-s + 41.2·13-s + 4.42·14-s + 54.8·15-s − 70.4·16-s + 70.8·17-s − 26.8·18-s + 56.6·19-s + 16.5·20-s − 4.44·21-s + 32.8·22-s + 135.·23-s + 63.5·24-s + 209.·25-s − 123.·26-s + 27·27-s − 1.34·28-s + ⋯
L(s)  = 1  − 1.05·2-s + 0.577·3-s + 0.113·4-s + 1.63·5-s − 0.609·6-s − 0.0800·7-s + 0.935·8-s + 0.333·9-s − 1.72·10-s − 0.301·11-s + 0.0653·12-s + 0.879·13-s + 0.0845·14-s + 0.943·15-s − 1.10·16-s + 1.01·17-s − 0.351·18-s + 0.683·19-s + 0.185·20-s − 0.0462·21-s + 0.318·22-s + 1.22·23-s + 0.540·24-s + 1.67·25-s − 0.927·26-s + 0.192·27-s − 0.00906·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.508204372\)
\(L(\frac12)\) \(\approx\) \(2.508204372\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 2.98T + 8T^{2} \)
5 \( 1 - 18.2T + 125T^{2} \)
7 \( 1 + 1.48T + 343T^{2} \)
13 \( 1 - 41.2T + 2.19e3T^{2} \)
17 \( 1 - 70.8T + 4.91e3T^{2} \)
19 \( 1 - 56.6T + 6.85e3T^{2} \)
23 \( 1 - 135.T + 1.21e4T^{2} \)
29 \( 1 + 103.T + 2.43e4T^{2} \)
31 \( 1 + 17.9T + 2.97e4T^{2} \)
37 \( 1 - 175.T + 5.06e4T^{2} \)
41 \( 1 + 27.4T + 6.89e4T^{2} \)
43 \( 1 + 4.16T + 7.95e4T^{2} \)
47 \( 1 + 26.7T + 1.03e5T^{2} \)
53 \( 1 - 155.T + 1.48e5T^{2} \)
59 \( 1 - 67.6T + 2.05e5T^{2} \)
67 \( 1 - 624.T + 3.00e5T^{2} \)
71 \( 1 - 693.T + 3.57e5T^{2} \)
73 \( 1 - 258.T + 3.89e5T^{2} \)
79 \( 1 - 511.T + 4.93e5T^{2} \)
83 \( 1 + 1.34e3T + 5.71e5T^{2} \)
89 \( 1 + 971.T + 7.04e5T^{2} \)
97 \( 1 + 61.7T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.933633211836720961612196672517, −8.252067977075792256342511989562, −7.44597584893875795855283111728, −6.60312458980415622910329825288, −5.62499695281887101164027029541, −4.96560468350412064642010364363, −3.61497013844574156621677805555, −2.58947462361283251619467451074, −1.57435155650379870463709817199, −0.929555929840361783726789141904, 0.929555929840361783726789141904, 1.57435155650379870463709817199, 2.58947462361283251619467451074, 3.61497013844574156621677805555, 4.96560468350412064642010364363, 5.62499695281887101164027029541, 6.60312458980415622910329825288, 7.44597584893875795855283111728, 8.252067977075792256342511989562, 8.933633211836720961612196672517

Graph of the $Z$-function along the critical line