Properties

Label 2-2013-1.1-c3-0-9
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.64·2-s − 3·3-s + 13.5·4-s − 15.1·5-s + 13.9·6-s + 14.1·7-s − 25.9·8-s + 9·9-s + 70.4·10-s + 11·11-s − 40.7·12-s − 52.0·13-s − 65.5·14-s + 45.4·15-s + 11.9·16-s − 7.88·17-s − 41.8·18-s − 50.5·19-s − 205.·20-s − 42.3·21-s − 51.1·22-s − 220.·23-s + 77.8·24-s + 104.·25-s + 242.·26-s − 27·27-s + 191.·28-s + ⋯
L(s)  = 1  − 1.64·2-s − 0.577·3-s + 1.69·4-s − 1.35·5-s + 0.948·6-s + 0.761·7-s − 1.14·8-s + 0.333·9-s + 2.22·10-s + 0.301·11-s − 0.980·12-s − 1.11·13-s − 1.25·14-s + 0.782·15-s + 0.186·16-s − 0.112·17-s − 0.547·18-s − 0.610·19-s − 2.30·20-s − 0.439·21-s − 0.495·22-s − 1.99·23-s + 0.662·24-s + 0.838·25-s + 1.82·26-s − 0.192·27-s + 1.29·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.09191344296\)
\(L(\frac12)\) \(\approx\) \(0.09191344296\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 4.64T + 8T^{2} \)
5 \( 1 + 15.1T + 125T^{2} \)
7 \( 1 - 14.1T + 343T^{2} \)
13 \( 1 + 52.0T + 2.19e3T^{2} \)
17 \( 1 + 7.88T + 4.91e3T^{2} \)
19 \( 1 + 50.5T + 6.85e3T^{2} \)
23 \( 1 + 220.T + 1.21e4T^{2} \)
29 \( 1 + 176.T + 2.43e4T^{2} \)
31 \( 1 - 94.4T + 2.97e4T^{2} \)
37 \( 1 - 64.7T + 5.06e4T^{2} \)
41 \( 1 + 68.8T + 6.89e4T^{2} \)
43 \( 1 - 316.T + 7.95e4T^{2} \)
47 \( 1 - 80.9T + 1.03e5T^{2} \)
53 \( 1 + 140.T + 1.48e5T^{2} \)
59 \( 1 + 21.6T + 2.05e5T^{2} \)
67 \( 1 - 50.3T + 3.00e5T^{2} \)
71 \( 1 + 569.T + 3.57e5T^{2} \)
73 \( 1 + 9.87T + 3.89e5T^{2} \)
79 \( 1 + 365.T + 4.93e5T^{2} \)
83 \( 1 + 1.43e3T + 5.71e5T^{2} \)
89 \( 1 - 595.T + 7.04e5T^{2} \)
97 \( 1 + 1.44e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.654138939412084272057119758388, −7.948069336198765727620490611734, −7.59718005953318960895060790702, −6.86177379166793996203034329999, −5.85782732117679724546841981353, −4.60078074637999691606997088202, −3.99471509587877877519073112666, −2.41989914531177170080723921586, −1.45075811398081138048113953362, −0.19136714501387914143693471741, 0.19136714501387914143693471741, 1.45075811398081138048113953362, 2.41989914531177170080723921586, 3.99471509587877877519073112666, 4.60078074637999691606997088202, 5.85782732117679724546841981353, 6.86177379166793996203034329999, 7.59718005953318960895060790702, 7.948069336198765727620490611734, 8.654138939412084272057119758388

Graph of the $Z$-function along the critical line