Properties

Label 2-2013-1.1-c3-0-70
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.63·2-s − 3·3-s + 5.20·4-s − 15.4·5-s − 10.9·6-s + 21.8·7-s − 10.1·8-s + 9·9-s − 56.1·10-s + 11·11-s − 15.6·12-s + 40.0·13-s + 79.2·14-s + 46.3·15-s − 78.5·16-s − 78.4·17-s + 32.7·18-s + 5.88·19-s − 80.4·20-s − 65.4·21-s + 39.9·22-s − 9.24·23-s + 30.4·24-s + 113.·25-s + 145.·26-s − 27·27-s + 113.·28-s + ⋯
L(s)  = 1  + 1.28·2-s − 0.577·3-s + 0.650·4-s − 1.38·5-s − 0.741·6-s + 1.17·7-s − 0.448·8-s + 0.333·9-s − 1.77·10-s + 0.301·11-s − 0.375·12-s + 0.855·13-s + 1.51·14-s + 0.797·15-s − 1.22·16-s − 1.11·17-s + 0.428·18-s + 0.0710·19-s − 0.899·20-s − 0.680·21-s + 0.387·22-s − 0.0837·23-s + 0.259·24-s + 0.908·25-s + 1.09·26-s − 0.192·27-s + 0.766·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.432065266\)
\(L(\frac12)\) \(\approx\) \(2.432065266\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 3.63T + 8T^{2} \)
5 \( 1 + 15.4T + 125T^{2} \)
7 \( 1 - 21.8T + 343T^{2} \)
13 \( 1 - 40.0T + 2.19e3T^{2} \)
17 \( 1 + 78.4T + 4.91e3T^{2} \)
19 \( 1 - 5.88T + 6.85e3T^{2} \)
23 \( 1 + 9.24T + 1.21e4T^{2} \)
29 \( 1 + 188.T + 2.43e4T^{2} \)
31 \( 1 - 190.T + 2.97e4T^{2} \)
37 \( 1 - 218.T + 5.06e4T^{2} \)
41 \( 1 + 254.T + 6.89e4T^{2} \)
43 \( 1 + 156.T + 7.95e4T^{2} \)
47 \( 1 + 101.T + 1.03e5T^{2} \)
53 \( 1 + 171.T + 1.48e5T^{2} \)
59 \( 1 - 222.T + 2.05e5T^{2} \)
67 \( 1 - 526.T + 3.00e5T^{2} \)
71 \( 1 - 886.T + 3.57e5T^{2} \)
73 \( 1 - 966.T + 3.89e5T^{2} \)
79 \( 1 + 611.T + 4.93e5T^{2} \)
83 \( 1 - 348.T + 5.71e5T^{2} \)
89 \( 1 - 742.T + 7.04e5T^{2} \)
97 \( 1 + 103.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.483151259505490154946106253480, −8.038071111446938745115911359898, −6.97078852834528345826202889903, −6.31717514794166788600728887055, −5.32097477970750319737505771930, −4.62118569840822313558949063318, −4.09363208910521472587190541999, −3.38322231327235686716518548411, −1.98036370847313714657407169613, −0.60398981896025152424607061428, 0.60398981896025152424607061428, 1.98036370847313714657407169613, 3.38322231327235686716518548411, 4.09363208910521472587190541999, 4.62118569840822313558949063318, 5.32097477970750319737505771930, 6.31717514794166788600728887055, 6.97078852834528345826202889903, 8.038071111446938745115911359898, 8.483151259505490154946106253480

Graph of the $Z$-function along the critical line