Properties

Label 2-2013-1.1-c3-0-74
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.31·2-s − 3·3-s + 3.01·4-s − 6.71·5-s − 9.95·6-s + 13.2·7-s − 16.5·8-s + 9·9-s − 22.2·10-s + 11·11-s − 9.04·12-s + 5.36·13-s + 44.1·14-s + 20.1·15-s − 79.0·16-s − 5.77·17-s + 29.8·18-s + 58.0·19-s − 20.2·20-s − 39.8·21-s + 36.5·22-s − 32.8·23-s + 49.6·24-s − 79.9·25-s + 17.8·26-s − 27·27-s + 40.0·28-s + ⋯
L(s)  = 1  + 1.17·2-s − 0.577·3-s + 0.376·4-s − 0.600·5-s − 0.677·6-s + 0.717·7-s − 0.731·8-s + 0.333·9-s − 0.704·10-s + 0.301·11-s − 0.217·12-s + 0.114·13-s + 0.842·14-s + 0.346·15-s − 1.23·16-s − 0.0823·17-s + 0.391·18-s + 0.701·19-s − 0.226·20-s − 0.414·21-s + 0.353·22-s − 0.298·23-s + 0.422·24-s − 0.639·25-s + 0.134·26-s − 0.192·27-s + 0.270·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.488441077\)
\(L(\frac12)\) \(\approx\) \(2.488441077\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 3.31T + 8T^{2} \)
5 \( 1 + 6.71T + 125T^{2} \)
7 \( 1 - 13.2T + 343T^{2} \)
13 \( 1 - 5.36T + 2.19e3T^{2} \)
17 \( 1 + 5.77T + 4.91e3T^{2} \)
19 \( 1 - 58.0T + 6.85e3T^{2} \)
23 \( 1 + 32.8T + 1.21e4T^{2} \)
29 \( 1 - 63.3T + 2.43e4T^{2} \)
31 \( 1 + 221.T + 2.97e4T^{2} \)
37 \( 1 + 140.T + 5.06e4T^{2} \)
41 \( 1 - 278.T + 6.89e4T^{2} \)
43 \( 1 - 294.T + 7.95e4T^{2} \)
47 \( 1 - 232.T + 1.03e5T^{2} \)
53 \( 1 - 214.T + 1.48e5T^{2} \)
59 \( 1 + 73.0T + 2.05e5T^{2} \)
67 \( 1 + 832.T + 3.00e5T^{2} \)
71 \( 1 + 141.T + 3.57e5T^{2} \)
73 \( 1 + 236.T + 3.89e5T^{2} \)
79 \( 1 - 1.34e3T + 4.93e5T^{2} \)
83 \( 1 + 278.T + 5.71e5T^{2} \)
89 \( 1 - 940.T + 7.04e5T^{2} \)
97 \( 1 + 259.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.806339554571847584801821577406, −7.78746209504973350306569383537, −7.13896409184044204417456893579, −6.07335317639073689274133512329, −5.52746138874554679580248368219, −4.66872253015759120980871608180, −4.07226733741404342341882409026, −3.27517118533471916059605123534, −1.97590723343589131459675826377, −0.62116264493802659338311778861, 0.62116264493802659338311778861, 1.97590723343589131459675826377, 3.27517118533471916059605123534, 4.07226733741404342341882409026, 4.66872253015759120980871608180, 5.52746138874554679580248368219, 6.07335317639073689274133512329, 7.13896409184044204417456893579, 7.78746209504973350306569383537, 8.806339554571847584801821577406

Graph of the $Z$-function along the critical line