Properties

Label 2-2013-1.1-c3-0-84
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.751·2-s − 3·3-s − 7.43·4-s − 3.91·5-s − 2.25·6-s + 9.58·7-s − 11.5·8-s + 9·9-s − 2.94·10-s + 11·11-s + 22.3·12-s + 52.7·13-s + 7.20·14-s + 11.7·15-s + 50.7·16-s + 124.·17-s + 6.76·18-s − 43.9·19-s + 29.1·20-s − 28.7·21-s + 8.26·22-s + 189.·23-s + 34.7·24-s − 109.·25-s + 39.6·26-s − 27·27-s − 71.2·28-s + ⋯
L(s)  = 1  + 0.265·2-s − 0.577·3-s − 0.929·4-s − 0.350·5-s − 0.153·6-s + 0.517·7-s − 0.512·8-s + 0.333·9-s − 0.0929·10-s + 0.301·11-s + 0.536·12-s + 1.12·13-s + 0.137·14-s + 0.202·15-s + 0.793·16-s + 1.78·17-s + 0.0885·18-s − 0.530·19-s + 0.325·20-s − 0.298·21-s + 0.0800·22-s + 1.71·23-s + 0.295·24-s − 0.877·25-s + 0.298·26-s − 0.192·27-s − 0.481·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.719484479\)
\(L(\frac12)\) \(\approx\) \(1.719484479\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 0.751T + 8T^{2} \)
5 \( 1 + 3.91T + 125T^{2} \)
7 \( 1 - 9.58T + 343T^{2} \)
13 \( 1 - 52.7T + 2.19e3T^{2} \)
17 \( 1 - 124.T + 4.91e3T^{2} \)
19 \( 1 + 43.9T + 6.85e3T^{2} \)
23 \( 1 - 189.T + 1.21e4T^{2} \)
29 \( 1 - 122.T + 2.43e4T^{2} \)
31 \( 1 + 227.T + 2.97e4T^{2} \)
37 \( 1 + 168.T + 5.06e4T^{2} \)
41 \( 1 + 149.T + 6.89e4T^{2} \)
43 \( 1 - 129.T + 7.95e4T^{2} \)
47 \( 1 + 336.T + 1.03e5T^{2} \)
53 \( 1 - 219.T + 1.48e5T^{2} \)
59 \( 1 - 478.T + 2.05e5T^{2} \)
67 \( 1 + 146.T + 3.00e5T^{2} \)
71 \( 1 - 286.T + 3.57e5T^{2} \)
73 \( 1 - 68.4T + 3.89e5T^{2} \)
79 \( 1 + 509.T + 4.93e5T^{2} \)
83 \( 1 - 1.12e3T + 5.71e5T^{2} \)
89 \( 1 - 301.T + 7.04e5T^{2} \)
97 \( 1 - 759.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.707253568819967340781235603674, −8.133929113199297346790580790338, −7.24850065030553667662036079972, −6.23504601112615488440480432754, −5.42810436133579094517420958227, −4.88357096842176336627050656788, −3.84632268983195763070556448604, −3.31954601101008762020563906881, −1.49889118644261228659304876130, −0.66277518184656831319876386161, 0.66277518184656831319876386161, 1.49889118644261228659304876130, 3.31954601101008762020563906881, 3.84632268983195763070556448604, 4.88357096842176336627050656788, 5.42810436133579094517420958227, 6.23504601112615488440480432754, 7.24850065030553667662036079972, 8.133929113199297346790580790338, 8.707253568819967340781235603674

Graph of the $Z$-function along the critical line