Properties

Label 2-2013-1.1-c3-0-77
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.779·2-s − 3·3-s − 7.39·4-s + 18.3·5-s + 2.33·6-s + 12.7·7-s + 11.9·8-s + 9·9-s − 14.3·10-s + 11·11-s + 22.1·12-s − 73.8·13-s − 9.93·14-s − 55.1·15-s + 49.7·16-s − 2.09·17-s − 7.01·18-s − 84.5·19-s − 135.·20-s − 38.2·21-s − 8.57·22-s − 188.·23-s − 35.9·24-s + 212.·25-s + 57.5·26-s − 27·27-s − 94.2·28-s + ⋯
L(s)  = 1  − 0.275·2-s − 0.577·3-s − 0.924·4-s + 1.64·5-s + 0.159·6-s + 0.688·7-s + 0.530·8-s + 0.333·9-s − 0.452·10-s + 0.301·11-s + 0.533·12-s − 1.57·13-s − 0.189·14-s − 0.949·15-s + 0.778·16-s − 0.0299·17-s − 0.0918·18-s − 1.02·19-s − 1.51·20-s − 0.397·21-s − 0.0830·22-s − 1.70·23-s − 0.306·24-s + 1.70·25-s + 0.434·26-s − 0.192·27-s − 0.636·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.588254248\)
\(L(\frac12)\) \(\approx\) \(1.588254248\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 0.779T + 8T^{2} \)
5 \( 1 - 18.3T + 125T^{2} \)
7 \( 1 - 12.7T + 343T^{2} \)
13 \( 1 + 73.8T + 2.19e3T^{2} \)
17 \( 1 + 2.09T + 4.91e3T^{2} \)
19 \( 1 + 84.5T + 6.85e3T^{2} \)
23 \( 1 + 188.T + 1.21e4T^{2} \)
29 \( 1 - 134.T + 2.43e4T^{2} \)
31 \( 1 - 319.T + 2.97e4T^{2} \)
37 \( 1 + 204.T + 5.06e4T^{2} \)
41 \( 1 - 375.T + 6.89e4T^{2} \)
43 \( 1 + 54.1T + 7.95e4T^{2} \)
47 \( 1 - 563.T + 1.03e5T^{2} \)
53 \( 1 + 23.4T + 1.48e5T^{2} \)
59 \( 1 - 662.T + 2.05e5T^{2} \)
67 \( 1 + 341.T + 3.00e5T^{2} \)
71 \( 1 + 634.T + 3.57e5T^{2} \)
73 \( 1 + 374.T + 3.89e5T^{2} \)
79 \( 1 + 972.T + 4.93e5T^{2} \)
83 \( 1 - 1.30e3T + 5.71e5T^{2} \)
89 \( 1 + 80.2T + 7.04e5T^{2} \)
97 \( 1 - 506.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.881908123151900962366663276402, −8.190121320337590913270601541058, −7.21319180774636890180097238064, −6.21159945923804181924037499671, −5.63478728962457850225266788866, −4.74865600854932058274226135508, −4.30972233058560784836176394865, −2.52331144029346162369032317324, −1.74643594712865866123754822516, −0.63809470797070686633230391541, 0.63809470797070686633230391541, 1.74643594712865866123754822516, 2.52331144029346162369032317324, 4.30972233058560784836176394865, 4.74865600854932058274226135508, 5.63478728962457850225266788866, 6.21159945923804181924037499671, 7.21319180774636890180097238064, 8.190121320337590913270601541058, 8.881908123151900962366663276402

Graph of the $Z$-function along the critical line