Properties

Label 2-2013-1.1-c3-0-7
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.23·2-s − 3·3-s − 6.46·4-s − 19.0·5-s + 3.71·6-s − 16.0·7-s + 17.9·8-s + 9·9-s + 23.5·10-s + 11·11-s + 19.3·12-s + 20.0·13-s + 19.8·14-s + 57.1·15-s + 29.5·16-s − 41.7·17-s − 11.1·18-s + 14.5·19-s + 123.·20-s + 48.1·21-s − 13.6·22-s + 216.·23-s − 53.7·24-s + 237.·25-s − 24.8·26-s − 27·27-s + 103.·28-s + ⋯
L(s)  = 1  − 0.437·2-s − 0.577·3-s − 0.808·4-s − 1.70·5-s + 0.252·6-s − 0.865·7-s + 0.791·8-s + 0.333·9-s + 0.745·10-s + 0.301·11-s + 0.466·12-s + 0.427·13-s + 0.379·14-s + 0.983·15-s + 0.461·16-s − 0.596·17-s − 0.145·18-s + 0.175·19-s + 1.37·20-s + 0.499·21-s − 0.132·22-s + 1.95·23-s − 0.457·24-s + 1.90·25-s − 0.187·26-s − 0.192·27-s + 0.699·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1081160550\)
\(L(\frac12)\) \(\approx\) \(0.1081160550\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 1.23T + 8T^{2} \)
5 \( 1 + 19.0T + 125T^{2} \)
7 \( 1 + 16.0T + 343T^{2} \)
13 \( 1 - 20.0T + 2.19e3T^{2} \)
17 \( 1 + 41.7T + 4.91e3T^{2} \)
19 \( 1 - 14.5T + 6.85e3T^{2} \)
23 \( 1 - 216.T + 1.21e4T^{2} \)
29 \( 1 + 306.T + 2.43e4T^{2} \)
31 \( 1 + 73.8T + 2.97e4T^{2} \)
37 \( 1 + 283.T + 5.06e4T^{2} \)
41 \( 1 + 376.T + 6.89e4T^{2} \)
43 \( 1 + 111.T + 7.95e4T^{2} \)
47 \( 1 + 111.T + 1.03e5T^{2} \)
53 \( 1 - 163.T + 1.48e5T^{2} \)
59 \( 1 - 96.6T + 2.05e5T^{2} \)
67 \( 1 + 818.T + 3.00e5T^{2} \)
71 \( 1 + 607.T + 3.57e5T^{2} \)
73 \( 1 - 808.T + 3.89e5T^{2} \)
79 \( 1 - 368.T + 4.93e5T^{2} \)
83 \( 1 + 316.T + 5.71e5T^{2} \)
89 \( 1 - 354.T + 7.04e5T^{2} \)
97 \( 1 + 681.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.894084312044031411531404854564, −8.077554970135830792676110497357, −7.18633385822384240250077501288, −6.78118091033935074827664586467, −5.43645367104481409618412131246, −4.70106054529099340775532866403, −3.76770055561208302996720444000, −3.34158627480506013712035289603, −1.33652163025535357171579700115, −0.18537564944979951758924184546, 0.18537564944979951758924184546, 1.33652163025535357171579700115, 3.34158627480506013712035289603, 3.76770055561208302996720444000, 4.70106054529099340775532866403, 5.43645367104481409618412131246, 6.78118091033935074827664586467, 7.18633385822384240250077501288, 8.077554970135830792676110497357, 8.894084312044031411531404854564

Graph of the $Z$-function along the critical line