Properties

Label 2-2013-1.1-c3-0-51
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.78·2-s − 3·3-s − 0.253·4-s + 1.24·5-s + 8.34·6-s + 31.9·7-s + 22.9·8-s + 9·9-s − 3.45·10-s + 11·11-s + 0.760·12-s − 83.9·13-s − 88.8·14-s − 3.72·15-s − 61.9·16-s − 118.·17-s − 25.0·18-s − 57.4·19-s − 0.314·20-s − 95.7·21-s − 30.6·22-s + 157.·23-s − 68.9·24-s − 123.·25-s + 233.·26-s − 27·27-s − 8.09·28-s + ⋯
L(s)  = 1  − 0.984·2-s − 0.577·3-s − 0.0317·4-s + 0.111·5-s + 0.568·6-s + 1.72·7-s + 1.01·8-s + 0.333·9-s − 0.109·10-s + 0.301·11-s + 0.0183·12-s − 1.79·13-s − 1.69·14-s − 0.0640·15-s − 0.967·16-s − 1.68·17-s − 0.328·18-s − 0.693·19-s − 0.00351·20-s − 0.994·21-s − 0.296·22-s + 1.42·23-s − 0.586·24-s − 0.987·25-s + 1.76·26-s − 0.192·27-s − 0.0546·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7564642597\)
\(L(\frac12)\) \(\approx\) \(0.7564642597\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 2.78T + 8T^{2} \)
5 \( 1 - 1.24T + 125T^{2} \)
7 \( 1 - 31.9T + 343T^{2} \)
13 \( 1 + 83.9T + 2.19e3T^{2} \)
17 \( 1 + 118.T + 4.91e3T^{2} \)
19 \( 1 + 57.4T + 6.85e3T^{2} \)
23 \( 1 - 157.T + 1.21e4T^{2} \)
29 \( 1 - 85.5T + 2.43e4T^{2} \)
31 \( 1 + 3.02T + 2.97e4T^{2} \)
37 \( 1 + 227.T + 5.06e4T^{2} \)
41 \( 1 - 135.T + 6.89e4T^{2} \)
43 \( 1 - 266.T + 7.95e4T^{2} \)
47 \( 1 + 98.6T + 1.03e5T^{2} \)
53 \( 1 - 33.4T + 1.48e5T^{2} \)
59 \( 1 + 343.T + 2.05e5T^{2} \)
67 \( 1 - 152.T + 3.00e5T^{2} \)
71 \( 1 + 732.T + 3.57e5T^{2} \)
73 \( 1 - 751.T + 3.89e5T^{2} \)
79 \( 1 + 478.T + 4.93e5T^{2} \)
83 \( 1 - 50.7T + 5.71e5T^{2} \)
89 \( 1 + 576.T + 7.04e5T^{2} \)
97 \( 1 - 849.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.861542841216600358178874532483, −8.088641959301490260471604755127, −7.36179910276858738861470556063, −6.77463076607293185343333595030, −5.42277344300422705899152255159, −4.64011628526319137252686327406, −4.38381469986298692720611272490, −2.33572695124761605859538690411, −1.64819884276033383268461174577, −0.49094102702717226801476829500, 0.49094102702717226801476829500, 1.64819884276033383268461174577, 2.33572695124761605859538690411, 4.38381469986298692720611272490, 4.64011628526319137252686327406, 5.42277344300422705899152255159, 6.77463076607293185343333595030, 7.36179910276858738861470556063, 8.088641959301490260471604755127, 8.861542841216600358178874532483

Graph of the $Z$-function along the critical line