Properties

Label 2-2013-1.1-c3-0-33
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.44·2-s + 3·3-s + 11.7·4-s − 6.52·5-s − 13.3·6-s − 19.5·7-s − 16.7·8-s + 9·9-s + 29.0·10-s + 11·11-s + 35.3·12-s + 12.3·13-s + 86.9·14-s − 19.5·15-s − 19.5·16-s − 84.6·17-s − 40.0·18-s + 26.7·19-s − 76.8·20-s − 58.6·21-s − 48.9·22-s − 81.4·23-s − 50.3·24-s − 82.4·25-s − 55.1·26-s + 27·27-s − 230.·28-s + ⋯
L(s)  = 1  − 1.57·2-s + 0.577·3-s + 1.47·4-s − 0.583·5-s − 0.907·6-s − 1.05·7-s − 0.741·8-s + 0.333·9-s + 0.917·10-s + 0.301·11-s + 0.849·12-s + 0.264·13-s + 1.65·14-s − 0.336·15-s − 0.305·16-s − 1.20·17-s − 0.524·18-s + 0.323·19-s − 0.858·20-s − 0.609·21-s − 0.474·22-s − 0.738·23-s − 0.428·24-s − 0.659·25-s − 0.415·26-s + 0.192·27-s − 1.55·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4680717953\)
\(L(\frac12)\) \(\approx\) \(0.4680717953\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 4.44T + 8T^{2} \)
5 \( 1 + 6.52T + 125T^{2} \)
7 \( 1 + 19.5T + 343T^{2} \)
13 \( 1 - 12.3T + 2.19e3T^{2} \)
17 \( 1 + 84.6T + 4.91e3T^{2} \)
19 \( 1 - 26.7T + 6.85e3T^{2} \)
23 \( 1 + 81.4T + 1.21e4T^{2} \)
29 \( 1 - 171.T + 2.43e4T^{2} \)
31 \( 1 + 106.T + 2.97e4T^{2} \)
37 \( 1 - 165.T + 5.06e4T^{2} \)
41 \( 1 + 407.T + 6.89e4T^{2} \)
43 \( 1 + 2.83T + 7.95e4T^{2} \)
47 \( 1 + 105.T + 1.03e5T^{2} \)
53 \( 1 - 346.T + 1.48e5T^{2} \)
59 \( 1 - 347.T + 2.05e5T^{2} \)
67 \( 1 + 729.T + 3.00e5T^{2} \)
71 \( 1 + 176.T + 3.57e5T^{2} \)
73 \( 1 + 751.T + 3.89e5T^{2} \)
79 \( 1 + 290.T + 4.93e5T^{2} \)
83 \( 1 - 957.T + 5.71e5T^{2} \)
89 \( 1 + 1.04e3T + 7.04e5T^{2} \)
97 \( 1 - 1.44e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.722144050185555149683589208715, −8.304353981201203144231060452440, −7.40974955213610973094951290492, −6.81060350512100598008469502288, −6.08055990401801593548863167758, −4.50824793352755491921746215830, −3.62575664351084789157727922025, −2.63584791657164235243857903723, −1.62523762330906131206232136972, −0.38587968068364561432670785181, 0.38587968068364561432670785181, 1.62523762330906131206232136972, 2.63584791657164235243857903723, 3.62575664351084789157727922025, 4.50824793352755491921746215830, 6.08055990401801593548863167758, 6.81060350512100598008469502288, 7.40974955213610973094951290492, 8.304353981201203144231060452440, 8.722144050185555149683589208715

Graph of the $Z$-function along the critical line