Properties

Label 2-2013-1.1-c3-0-151
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.79·2-s + 3·3-s + 14.9·4-s + 12.3·5-s − 14.3·6-s + 26.5·7-s − 33.4·8-s + 9·9-s − 58.9·10-s + 11·11-s + 44.9·12-s − 19.5·13-s − 127.·14-s + 36.9·15-s + 40.4·16-s + 48.6·17-s − 43.1·18-s + 152.·19-s + 184.·20-s + 79.5·21-s − 52.7·22-s + 145.·23-s − 100.·24-s + 26.4·25-s + 93.8·26-s + 27·27-s + 396.·28-s + ⋯
L(s)  = 1  − 1.69·2-s + 0.577·3-s + 1.87·4-s + 1.10·5-s − 0.978·6-s + 1.43·7-s − 1.47·8-s + 0.333·9-s − 1.86·10-s + 0.301·11-s + 1.08·12-s − 0.417·13-s − 2.42·14-s + 0.635·15-s + 0.632·16-s + 0.694·17-s − 0.564·18-s + 1.84·19-s + 2.06·20-s + 0.826·21-s − 0.510·22-s + 1.31·23-s − 0.853·24-s + 0.211·25-s + 0.707·26-s + 0.192·27-s + 2.67·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.209084951\)
\(L(\frac12)\) \(\approx\) \(2.209084951\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 4.79T + 8T^{2} \)
5 \( 1 - 12.3T + 125T^{2} \)
7 \( 1 - 26.5T + 343T^{2} \)
13 \( 1 + 19.5T + 2.19e3T^{2} \)
17 \( 1 - 48.6T + 4.91e3T^{2} \)
19 \( 1 - 152.T + 6.85e3T^{2} \)
23 \( 1 - 145.T + 1.21e4T^{2} \)
29 \( 1 + 293.T + 2.43e4T^{2} \)
31 \( 1 + 192.T + 2.97e4T^{2} \)
37 \( 1 + 30.1T + 5.06e4T^{2} \)
41 \( 1 - 142.T + 6.89e4T^{2} \)
43 \( 1 + 255.T + 7.95e4T^{2} \)
47 \( 1 - 15.0T + 1.03e5T^{2} \)
53 \( 1 - 89.8T + 1.48e5T^{2} \)
59 \( 1 - 586.T + 2.05e5T^{2} \)
67 \( 1 + 1.66T + 3.00e5T^{2} \)
71 \( 1 - 690.T + 3.57e5T^{2} \)
73 \( 1 - 849.T + 3.89e5T^{2} \)
79 \( 1 - 606.T + 4.93e5T^{2} \)
83 \( 1 + 570.T + 5.71e5T^{2} \)
89 \( 1 - 455.T + 7.04e5T^{2} \)
97 \( 1 - 136.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.955018581238506311277237777742, −8.099160575739158775371278433107, −7.47910669928077790616386804868, −6.99097659310972484331510033925, −5.61761582499753401579587897037, −5.06146402278221790544594161447, −3.48237714939422275224289782984, −2.27535938283669315859337298324, −1.64024496866228544856128257427, −0.941906301457121273491937966537, 0.941906301457121273491937966537, 1.64024496866228544856128257427, 2.27535938283669315859337298324, 3.48237714939422275224289782984, 5.06146402278221790544594161447, 5.61761582499753401579587897037, 6.99097659310972484331510033925, 7.47910669928077790616386804868, 8.099160575739158775371278433107, 8.955018581238506311277237777742

Graph of the $Z$-function along the critical line