Properties

Label 2-2013-1.1-c3-0-31
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.16·2-s + 3·3-s − 6.63·4-s − 13.0·5-s + 3.50·6-s − 4.71·7-s − 17.0·8-s + 9·9-s − 15.2·10-s + 11·11-s − 19.9·12-s − 38.9·13-s − 5.50·14-s − 39.2·15-s + 33.1·16-s + 56.3·17-s + 10.5·18-s − 31.1·19-s + 86.8·20-s − 14.1·21-s + 12.8·22-s − 98.8·23-s − 51.2·24-s + 46.2·25-s − 45.5·26-s + 27·27-s + 31.2·28-s + ⋯
L(s)  = 1  + 0.413·2-s + 0.577·3-s − 0.829·4-s − 1.17·5-s + 0.238·6-s − 0.254·7-s − 0.755·8-s + 0.333·9-s − 0.483·10-s + 0.301·11-s − 0.478·12-s − 0.831·13-s − 0.105·14-s − 0.675·15-s + 0.517·16-s + 0.804·17-s + 0.137·18-s − 0.376·19-s + 0.970·20-s − 0.146·21-s + 0.124·22-s − 0.895·23-s − 0.436·24-s + 0.369·25-s − 0.343·26-s + 0.192·27-s + 0.210·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8923622214\)
\(L(\frac12)\) \(\approx\) \(0.8923622214\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 1.16T + 8T^{2} \)
5 \( 1 + 13.0T + 125T^{2} \)
7 \( 1 + 4.71T + 343T^{2} \)
13 \( 1 + 38.9T + 2.19e3T^{2} \)
17 \( 1 - 56.3T + 4.91e3T^{2} \)
19 \( 1 + 31.1T + 6.85e3T^{2} \)
23 \( 1 + 98.8T + 1.21e4T^{2} \)
29 \( 1 + 204.T + 2.43e4T^{2} \)
31 \( 1 + 242.T + 2.97e4T^{2} \)
37 \( 1 - 154.T + 5.06e4T^{2} \)
41 \( 1 + 265.T + 6.89e4T^{2} \)
43 \( 1 + 296.T + 7.95e4T^{2} \)
47 \( 1 + 254.T + 1.03e5T^{2} \)
53 \( 1 + 38.5T + 1.48e5T^{2} \)
59 \( 1 + 168.T + 2.05e5T^{2} \)
67 \( 1 - 901.T + 3.00e5T^{2} \)
71 \( 1 - 584.T + 3.57e5T^{2} \)
73 \( 1 - 664.T + 3.89e5T^{2} \)
79 \( 1 - 536.T + 4.93e5T^{2} \)
83 \( 1 + 489.T + 5.71e5T^{2} \)
89 \( 1 - 12.0T + 7.04e5T^{2} \)
97 \( 1 - 610.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.703813417147737245330779014186, −7.984464710069008004102761749393, −7.49645131862658756356151680707, −6.44705900462964868953497535202, −5.36402311142251549890642280671, −4.59983299520129098247790569507, −3.61979465639694227023868656034, −3.45612343445640409828232307988, −1.96015674164299883361852607143, −0.38461009316352991841013208852, 0.38461009316352991841013208852, 1.96015674164299883361852607143, 3.45612343445640409828232307988, 3.61979465639694227023868656034, 4.59983299520129098247790569507, 5.36402311142251549890642280671, 6.44705900462964868953497535202, 7.49645131862658756356151680707, 7.984464710069008004102761749393, 8.703813417147737245330779014186

Graph of the $Z$-function along the critical line