Properties

Label 2-2013-1.1-c3-0-189
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.801·2-s + 3·3-s − 7.35·4-s + 19.8·5-s + 2.40·6-s + 26.4·7-s − 12.3·8-s + 9·9-s + 15.9·10-s + 11·11-s − 22.0·12-s + 36.4·13-s + 21.1·14-s + 59.5·15-s + 48.9·16-s − 19.2·17-s + 7.21·18-s + 44.2·19-s − 146.·20-s + 79.2·21-s + 8.81·22-s − 41.0·23-s − 36.9·24-s + 269.·25-s + 29.2·26-s + 27·27-s − 194.·28-s + ⋯
L(s)  = 1  + 0.283·2-s + 0.577·3-s − 0.919·4-s + 1.77·5-s + 0.163·6-s + 1.42·7-s − 0.543·8-s + 0.333·9-s + 0.503·10-s + 0.301·11-s − 0.530·12-s + 0.778·13-s + 0.404·14-s + 1.02·15-s + 0.765·16-s − 0.274·17-s + 0.0944·18-s + 0.534·19-s − 1.63·20-s + 0.823·21-s + 0.0854·22-s − 0.372·23-s − 0.314·24-s + 2.15·25-s + 0.220·26-s + 0.192·27-s − 1.31·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.109494058\)
\(L(\frac12)\) \(\approx\) \(5.109494058\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 0.801T + 8T^{2} \)
5 \( 1 - 19.8T + 125T^{2} \)
7 \( 1 - 26.4T + 343T^{2} \)
13 \( 1 - 36.4T + 2.19e3T^{2} \)
17 \( 1 + 19.2T + 4.91e3T^{2} \)
19 \( 1 - 44.2T + 6.85e3T^{2} \)
23 \( 1 + 41.0T + 1.21e4T^{2} \)
29 \( 1 - 50.9T + 2.43e4T^{2} \)
31 \( 1 + 33.1T + 2.97e4T^{2} \)
37 \( 1 + 161.T + 5.06e4T^{2} \)
41 \( 1 - 118.T + 6.89e4T^{2} \)
43 \( 1 - 34.0T + 7.95e4T^{2} \)
47 \( 1 - 482.T + 1.03e5T^{2} \)
53 \( 1 - 113.T + 1.48e5T^{2} \)
59 \( 1 + 182.T + 2.05e5T^{2} \)
67 \( 1 + 769.T + 3.00e5T^{2} \)
71 \( 1 - 442.T + 3.57e5T^{2} \)
73 \( 1 + 690.T + 3.89e5T^{2} \)
79 \( 1 - 184.T + 4.93e5T^{2} \)
83 \( 1 + 990.T + 5.71e5T^{2} \)
89 \( 1 + 468.T + 7.04e5T^{2} \)
97 \( 1 - 772.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.869569944732231797069574381039, −8.308957530938221984261116997954, −7.30153553085993948253216171379, −6.13209432945942236847681542083, −5.54156952028456875755273883865, −4.80090594445104231496391262257, −3.99598896867131992359878981707, −2.80086014078782314991884314467, −1.76848833154333486467536705951, −1.10282460050394417985823620033, 1.10282460050394417985823620033, 1.76848833154333486467536705951, 2.80086014078782314991884314467, 3.99598896867131992359878981707, 4.80090594445104231496391262257, 5.54156952028456875755273883865, 6.13209432945942236847681542083, 7.30153553085993948253216171379, 8.308957530938221984261116997954, 8.869569944732231797069574381039

Graph of the $Z$-function along the critical line