Properties

Label 2-2013-1.1-c3-0-89
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.93·2-s + 3·3-s − 4.25·4-s − 18.7·5-s − 5.80·6-s + 6.86·7-s + 23.7·8-s + 9·9-s + 36.3·10-s + 11·11-s − 12.7·12-s + 59.3·13-s − 13.2·14-s − 56.2·15-s − 11.8·16-s + 23.8·17-s − 17.4·18-s + 127.·19-s + 79.8·20-s + 20.5·21-s − 21.2·22-s + 113.·23-s + 71.1·24-s + 226.·25-s − 114.·26-s + 27·27-s − 29.2·28-s + ⋯
L(s)  = 1  − 0.684·2-s + 0.577·3-s − 0.531·4-s − 1.67·5-s − 0.395·6-s + 0.370·7-s + 1.04·8-s + 0.333·9-s + 1.14·10-s + 0.301·11-s − 0.307·12-s + 1.26·13-s − 0.253·14-s − 0.968·15-s − 0.185·16-s + 0.339·17-s − 0.228·18-s + 1.54·19-s + 0.892·20-s + 0.214·21-s − 0.206·22-s + 1.02·23-s + 0.605·24-s + 1.81·25-s − 0.865·26-s + 0.192·27-s − 0.197·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.430399993\)
\(L(\frac12)\) \(\approx\) \(1.430399993\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 1.93T + 8T^{2} \)
5 \( 1 + 18.7T + 125T^{2} \)
7 \( 1 - 6.86T + 343T^{2} \)
13 \( 1 - 59.3T + 2.19e3T^{2} \)
17 \( 1 - 23.8T + 4.91e3T^{2} \)
19 \( 1 - 127.T + 6.85e3T^{2} \)
23 \( 1 - 113.T + 1.21e4T^{2} \)
29 \( 1 - 102.T + 2.43e4T^{2} \)
31 \( 1 + 212.T + 2.97e4T^{2} \)
37 \( 1 + 202.T + 5.06e4T^{2} \)
41 \( 1 - 434.T + 6.89e4T^{2} \)
43 \( 1 + 99.4T + 7.95e4T^{2} \)
47 \( 1 - 138.T + 1.03e5T^{2} \)
53 \( 1 - 23.4T + 1.48e5T^{2} \)
59 \( 1 - 45.0T + 2.05e5T^{2} \)
67 \( 1 + 142.T + 3.00e5T^{2} \)
71 \( 1 - 730.T + 3.57e5T^{2} \)
73 \( 1 + 51.4T + 3.89e5T^{2} \)
79 \( 1 + 1.02e3T + 4.93e5T^{2} \)
83 \( 1 - 287.T + 5.71e5T^{2} \)
89 \( 1 + 658.T + 7.04e5T^{2} \)
97 \( 1 - 862.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.823860592182653274666724549870, −8.023283105427808533935126522931, −7.60759568802578607736352734444, −6.90775868925406466423355082318, −5.41908485297280123928293665615, −4.52677682311927948914896676508, −3.74856429063294330061556352013, −3.19233418467056212589312652912, −1.38406275054387073611482831783, −0.68765111832588743429529712119, 0.68765111832588743429529712119, 1.38406275054387073611482831783, 3.19233418467056212589312652912, 3.74856429063294330061556352013, 4.52677682311927948914896676508, 5.41908485297280123928293665615, 6.90775868925406466423355082318, 7.60759568802578607736352734444, 8.023283105427808533935126522931, 8.823860592182653274666724549870

Graph of the $Z$-function along the critical line