Properties

Label 2-2013-1.1-c3-0-64
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.79·2-s − 3·3-s + 14.9·4-s − 13.3·5-s − 14.3·6-s − 17.5·7-s + 33.4·8-s + 9·9-s − 63.8·10-s − 11·11-s − 44.9·12-s + 6.48·13-s − 84.0·14-s + 39.9·15-s + 40.4·16-s + 41.2·17-s + 43.1·18-s − 70.7·19-s − 199.·20-s + 52.6·21-s − 52.7·22-s + 108.·23-s − 100.·24-s + 52.1·25-s + 31.0·26-s − 27·27-s − 262.·28-s + ⋯
L(s)  = 1  + 1.69·2-s − 0.577·3-s + 1.87·4-s − 1.19·5-s − 0.978·6-s − 0.947·7-s + 1.47·8-s + 0.333·9-s − 2.01·10-s − 0.301·11-s − 1.08·12-s + 0.138·13-s − 1.60·14-s + 0.687·15-s + 0.632·16-s + 0.588·17-s + 0.564·18-s − 0.854·19-s − 2.22·20-s + 0.546·21-s − 0.510·22-s + 0.985·23-s − 0.853·24-s + 0.417·25-s + 0.234·26-s − 0.192·27-s − 1.77·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.747867110\)
\(L(\frac12)\) \(\approx\) \(2.747867110\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 4.79T + 8T^{2} \)
5 \( 1 + 13.3T + 125T^{2} \)
7 \( 1 + 17.5T + 343T^{2} \)
13 \( 1 - 6.48T + 2.19e3T^{2} \)
17 \( 1 - 41.2T + 4.91e3T^{2} \)
19 \( 1 + 70.7T + 6.85e3T^{2} \)
23 \( 1 - 108.T + 1.21e4T^{2} \)
29 \( 1 + 26.1T + 2.43e4T^{2} \)
31 \( 1 + 94.3T + 2.97e4T^{2} \)
37 \( 1 + 283.T + 5.06e4T^{2} \)
41 \( 1 - 410.T + 6.89e4T^{2} \)
43 \( 1 + 3.39T + 7.95e4T^{2} \)
47 \( 1 - 18.3T + 1.03e5T^{2} \)
53 \( 1 - 342.T + 1.48e5T^{2} \)
59 \( 1 - 525.T + 2.05e5T^{2} \)
67 \( 1 - 638.T + 3.00e5T^{2} \)
71 \( 1 + 102.T + 3.57e5T^{2} \)
73 \( 1 - 802.T + 3.89e5T^{2} \)
79 \( 1 - 533.T + 4.93e5T^{2} \)
83 \( 1 - 914.T + 5.71e5T^{2} \)
89 \( 1 - 1.46e3T + 7.04e5T^{2} \)
97 \( 1 + 166.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.669243601812485545375112338169, −7.58223240011833786243906340364, −6.95867243195434920692687131710, −6.26533547667392263252341263589, −5.45893937090216416319145367458, −4.72812766810717480754784811787, −3.79084895023544815747472188763, −3.42724527275133408307281704589, −2.29270124038516840897543241764, −0.57876780889365179422699818227, 0.57876780889365179422699818227, 2.29270124038516840897543241764, 3.42724527275133408307281704589, 3.79084895023544815747472188763, 4.72812766810717480754784811787, 5.45893937090216416319145367458, 6.26533547667392263252341263589, 6.95867243195434920692687131710, 7.58223240011833786243906340364, 8.669243601812485545375112338169

Graph of the $Z$-function along the critical line