Properties

Label 2-2013-1.1-c3-0-129
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.68·2-s − 3·3-s + 13.9·4-s − 15.0·5-s − 14.0·6-s + 33.3·7-s + 28.0·8-s + 9·9-s − 70.4·10-s − 11·11-s − 41.9·12-s + 4.73·13-s + 156.·14-s + 45.1·15-s + 19.5·16-s + 126.·17-s + 42.1·18-s + 91.3·19-s − 210.·20-s − 100.·21-s − 51.5·22-s − 136.·23-s − 84.0·24-s + 101.·25-s + 22.2·26-s − 27·27-s + 466.·28-s + ⋯
L(s)  = 1  + 1.65·2-s − 0.577·3-s + 1.74·4-s − 1.34·5-s − 0.956·6-s + 1.80·7-s + 1.23·8-s + 0.333·9-s − 2.22·10-s − 0.301·11-s − 1.00·12-s + 0.101·13-s + 2.98·14-s + 0.776·15-s + 0.304·16-s + 1.81·17-s + 0.552·18-s + 1.10·19-s − 2.34·20-s − 1.04·21-s − 0.499·22-s − 1.23·23-s − 0.714·24-s + 0.809·25-s + 0.167·26-s − 0.192·27-s + 3.14·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.128709033\)
\(L(\frac12)\) \(\approx\) \(5.128709033\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 4.68T + 8T^{2} \)
5 \( 1 + 15.0T + 125T^{2} \)
7 \( 1 - 33.3T + 343T^{2} \)
13 \( 1 - 4.73T + 2.19e3T^{2} \)
17 \( 1 - 126.T + 4.91e3T^{2} \)
19 \( 1 - 91.3T + 6.85e3T^{2} \)
23 \( 1 + 136.T + 1.21e4T^{2} \)
29 \( 1 + 26.6T + 2.43e4T^{2} \)
31 \( 1 + 188.T + 2.97e4T^{2} \)
37 \( 1 - 275.T + 5.06e4T^{2} \)
41 \( 1 + 149.T + 6.89e4T^{2} \)
43 \( 1 - 307.T + 7.95e4T^{2} \)
47 \( 1 + 244.T + 1.03e5T^{2} \)
53 \( 1 + 218.T + 1.48e5T^{2} \)
59 \( 1 - 682.T + 2.05e5T^{2} \)
67 \( 1 - 889.T + 3.00e5T^{2} \)
71 \( 1 - 681.T + 3.57e5T^{2} \)
73 \( 1 + 907.T + 3.89e5T^{2} \)
79 \( 1 - 1.30e3T + 4.93e5T^{2} \)
83 \( 1 + 545.T + 5.71e5T^{2} \)
89 \( 1 - 379.T + 7.04e5T^{2} \)
97 \( 1 - 1.72e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.339162490514265775626960724140, −7.63485903285689354271932133689, −7.38957362646280260536947255596, −5.99801114398747322606202937301, −5.32471546653120936205346446851, −4.82229462788075796633372314253, −3.97061283453390545462624777501, −3.41324453954198300141070756110, −2.03784954864004528335102238205, −0.861967137695153840557124121924, 0.861967137695153840557124121924, 2.03784954864004528335102238205, 3.41324453954198300141070756110, 3.97061283453390545462624777501, 4.82229462788075796633372314253, 5.32471546653120936205346446851, 5.99801114398747322606202937301, 7.38957362646280260536947255596, 7.63485903285689354271932133689, 8.339162490514265775626960724140

Graph of the $Z$-function along the critical line