Properties

Label 2-2013-1.1-c3-0-46
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.16·2-s − 3·3-s + 1.99·4-s + 0.861·5-s − 9.48·6-s − 17.4·7-s − 18.9·8-s + 9·9-s + 2.72·10-s − 11·11-s − 5.98·12-s + 53.8·13-s − 55.0·14-s − 2.58·15-s − 75.9·16-s − 101.·17-s + 28.4·18-s − 13.8·19-s + 1.71·20-s + 52.2·21-s − 34.7·22-s − 189.·23-s + 56.9·24-s − 124.·25-s + 170.·26-s − 27·27-s − 34.7·28-s + ⋯
L(s)  = 1  + 1.11·2-s − 0.577·3-s + 0.249·4-s + 0.0770·5-s − 0.645·6-s − 0.940·7-s − 0.839·8-s + 0.333·9-s + 0.0860·10-s − 0.301·11-s − 0.143·12-s + 1.14·13-s − 1.05·14-s − 0.0444·15-s − 1.18·16-s − 1.44·17-s + 0.372·18-s − 0.167·19-s + 0.0192·20-s + 0.542·21-s − 0.337·22-s − 1.72·23-s + 0.484·24-s − 0.994·25-s + 1.28·26-s − 0.192·27-s − 0.234·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.453965569\)
\(L(\frac12)\) \(\approx\) \(1.453965569\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 3.16T + 8T^{2} \)
5 \( 1 - 0.861T + 125T^{2} \)
7 \( 1 + 17.4T + 343T^{2} \)
13 \( 1 - 53.8T + 2.19e3T^{2} \)
17 \( 1 + 101.T + 4.91e3T^{2} \)
19 \( 1 + 13.8T + 6.85e3T^{2} \)
23 \( 1 + 189.T + 1.21e4T^{2} \)
29 \( 1 - 193.T + 2.43e4T^{2} \)
31 \( 1 - 295.T + 2.97e4T^{2} \)
37 \( 1 + 298.T + 5.06e4T^{2} \)
41 \( 1 + 39.2T + 6.89e4T^{2} \)
43 \( 1 - 365.T + 7.95e4T^{2} \)
47 \( 1 - 121.T + 1.03e5T^{2} \)
53 \( 1 + 376.T + 1.48e5T^{2} \)
59 \( 1 + 380.T + 2.05e5T^{2} \)
67 \( 1 - 719.T + 3.00e5T^{2} \)
71 \( 1 + 978.T + 3.57e5T^{2} \)
73 \( 1 - 991.T + 3.89e5T^{2} \)
79 \( 1 - 803.T + 4.93e5T^{2} \)
83 \( 1 + 585.T + 5.71e5T^{2} \)
89 \( 1 - 241.T + 7.04e5T^{2} \)
97 \( 1 - 11.0T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.796301731566895888653787543383, −8.033421396838532930904926234450, −6.59999769250539988796881990245, −6.33613700623440290290345461661, −5.69825773158642055045096635115, −4.60962847558986970718871749444, −4.05538494456108656796118368188, −3.16733747402484256784348197510, −2.10370410500404604576195182221, −0.45845653413731901352279322050, 0.45845653413731901352279322050, 2.10370410500404604576195182221, 3.16733747402484256784348197510, 4.05538494456108656796118368188, 4.60962847558986970718871749444, 5.69825773158642055045096635115, 6.33613700623440290290345461661, 6.59999769250539988796881990245, 8.033421396838532930904926234450, 8.796301731566895888653787543383

Graph of the $Z$-function along the critical line