Properties

Label 2-2013-1.1-c3-0-55
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.77·2-s − 3·3-s − 4.83·4-s − 9.16·5-s − 5.33·6-s + 17.1·7-s − 22.8·8-s + 9·9-s − 16.3·10-s − 11·11-s + 14.4·12-s + 37.9·13-s + 30.5·14-s + 27.4·15-s − 1.98·16-s + 71.5·17-s + 16.0·18-s − 28.2·19-s + 44.2·20-s − 51.4·21-s − 19.5·22-s − 129.·23-s + 68.5·24-s − 40.9·25-s + 67.6·26-s − 27·27-s − 82.8·28-s + ⋯
L(s)  = 1  + 0.629·2-s − 0.577·3-s − 0.604·4-s − 0.819·5-s − 0.363·6-s + 0.925·7-s − 1.00·8-s + 0.333·9-s − 0.515·10-s − 0.301·11-s + 0.348·12-s + 0.810·13-s + 0.582·14-s + 0.473·15-s − 0.0310·16-s + 1.02·17-s + 0.209·18-s − 0.341·19-s + 0.495·20-s − 0.534·21-s − 0.189·22-s − 1.17·23-s + 0.582·24-s − 0.327·25-s + 0.510·26-s − 0.192·27-s − 0.559·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.290755844\)
\(L(\frac12)\) \(\approx\) \(1.290755844\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 1.77T + 8T^{2} \)
5 \( 1 + 9.16T + 125T^{2} \)
7 \( 1 - 17.1T + 343T^{2} \)
13 \( 1 - 37.9T + 2.19e3T^{2} \)
17 \( 1 - 71.5T + 4.91e3T^{2} \)
19 \( 1 + 28.2T + 6.85e3T^{2} \)
23 \( 1 + 129.T + 1.21e4T^{2} \)
29 \( 1 + 74.5T + 2.43e4T^{2} \)
31 \( 1 - 56.2T + 2.97e4T^{2} \)
37 \( 1 + 161.T + 5.06e4T^{2} \)
41 \( 1 + 48.2T + 6.89e4T^{2} \)
43 \( 1 + 231.T + 7.95e4T^{2} \)
47 \( 1 + 107.T + 1.03e5T^{2} \)
53 \( 1 - 453.T + 1.48e5T^{2} \)
59 \( 1 + 417.T + 2.05e5T^{2} \)
67 \( 1 - 334.T + 3.00e5T^{2} \)
71 \( 1 - 341.T + 3.57e5T^{2} \)
73 \( 1 + 65.7T + 3.89e5T^{2} \)
79 \( 1 + 271.T + 4.93e5T^{2} \)
83 \( 1 + 513.T + 5.71e5T^{2} \)
89 \( 1 + 1.04e3T + 7.04e5T^{2} \)
97 \( 1 + 1.40e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.448657648922492467665588512411, −8.182368456203995436660355719300, −7.26966650214731276629385475284, −6.10364817477105389740727836208, −5.50724189199940078784208650473, −4.70600343962227574199648410195, −4.00442552834201980262142413061, −3.31426498697360889010070412126, −1.73025678092625065644663685566, −0.49907080893468589397222792836, 0.49907080893468589397222792836, 1.73025678092625065644663685566, 3.31426498697360889010070412126, 4.00442552834201980262142413061, 4.70600343962227574199648410195, 5.50724189199940078784208650473, 6.10364817477105389740727836208, 7.26966650214731276629385475284, 8.182368456203995436660355719300, 8.448657648922492467665588512411

Graph of the $Z$-function along the critical line