Properties

Label 2-2013-1.1-c3-0-37
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.449·2-s − 3·3-s − 7.79·4-s + 5.67·5-s + 1.34·6-s + 0.979·7-s + 7.09·8-s + 9·9-s − 2.54·10-s − 11·11-s + 23.3·12-s − 33.6·13-s − 0.439·14-s − 17.0·15-s + 59.1·16-s − 99.2·17-s − 4.04·18-s + 14.5·19-s − 44.2·20-s − 2.93·21-s + 4.94·22-s + 12.6·23-s − 21.2·24-s − 92.8·25-s + 15.1·26-s − 27·27-s − 7.63·28-s + ⋯
L(s)  = 1  − 0.158·2-s − 0.577·3-s − 0.974·4-s + 0.507·5-s + 0.0916·6-s + 0.0528·7-s + 0.313·8-s + 0.333·9-s − 0.0805·10-s − 0.301·11-s + 0.562·12-s − 0.718·13-s − 0.00839·14-s − 0.292·15-s + 0.924·16-s − 1.41·17-s − 0.0529·18-s + 0.175·19-s − 0.494·20-s − 0.0305·21-s + 0.0478·22-s + 0.114·23-s − 0.181·24-s − 0.742·25-s + 0.114·26-s − 0.192·27-s − 0.0515·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7055814837\)
\(L(\frac12)\) \(\approx\) \(0.7055814837\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 0.449T + 8T^{2} \)
5 \( 1 - 5.67T + 125T^{2} \)
7 \( 1 - 0.979T + 343T^{2} \)
13 \( 1 + 33.6T + 2.19e3T^{2} \)
17 \( 1 + 99.2T + 4.91e3T^{2} \)
19 \( 1 - 14.5T + 6.85e3T^{2} \)
23 \( 1 - 12.6T + 1.21e4T^{2} \)
29 \( 1 + 48.9T + 2.43e4T^{2} \)
31 \( 1 + 61.5T + 2.97e4T^{2} \)
37 \( 1 - 391.T + 5.06e4T^{2} \)
41 \( 1 - 297.T + 6.89e4T^{2} \)
43 \( 1 - 284.T + 7.95e4T^{2} \)
47 \( 1 + 37.9T + 1.03e5T^{2} \)
53 \( 1 + 265.T + 1.48e5T^{2} \)
59 \( 1 + 438.T + 2.05e5T^{2} \)
67 \( 1 + 312.T + 3.00e5T^{2} \)
71 \( 1 + 926.T + 3.57e5T^{2} \)
73 \( 1 + 1.16e3T + 3.89e5T^{2} \)
79 \( 1 - 526.T + 4.93e5T^{2} \)
83 \( 1 + 528.T + 5.71e5T^{2} \)
89 \( 1 - 1.17e3T + 7.04e5T^{2} \)
97 \( 1 + 1.49e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.098958411089538295599705470408, −7.954069136521729873733349433096, −7.36793659232646019143107677825, −6.21783321339020698317383552809, −5.63645992604731542724652319858, −4.66164340384806859369274590050, −4.23204749656263987721203044833, −2.80626792380163950503032661846, −1.67567172771617501350786239565, −0.41139967293193779292071569869, 0.41139967293193779292071569869, 1.67567172771617501350786239565, 2.80626792380163950503032661846, 4.23204749656263987721203044833, 4.66164340384806859369274590050, 5.63645992604731542724652319858, 6.21783321339020698317383552809, 7.36793659232646019143107677825, 7.954069136521729873733349433096, 9.098958411089538295599705470408

Graph of the $Z$-function along the critical line