Properties

Label 2-2013-1.1-c3-0-22
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.27·2-s − 3·3-s + 19.8·4-s − 1.30·5-s + 15.8·6-s + 18.3·7-s − 62.4·8-s + 9·9-s + 6.85·10-s − 11·11-s − 59.5·12-s − 9.87·13-s − 97.0·14-s + 3.90·15-s + 170.·16-s − 113.·17-s − 47.4·18-s + 80.8·19-s − 25.7·20-s − 55.1·21-s + 58.0·22-s − 68.3·23-s + 187.·24-s − 123.·25-s + 52.0·26-s − 27·27-s + 364.·28-s + ⋯
L(s)  = 1  − 1.86·2-s − 0.577·3-s + 2.47·4-s − 0.116·5-s + 1.07·6-s + 0.993·7-s − 2.76·8-s + 0.333·9-s + 0.216·10-s − 0.301·11-s − 1.43·12-s − 0.210·13-s − 1.85·14-s + 0.0671·15-s + 2.66·16-s − 1.61·17-s − 0.621·18-s + 0.976·19-s − 0.288·20-s − 0.573·21-s + 0.562·22-s − 0.620·23-s + 1.59·24-s − 0.986·25-s + 0.392·26-s − 0.192·27-s + 2.46·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3111175272\)
\(L(\frac12)\) \(\approx\) \(0.3111175272\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 5.27T + 8T^{2} \)
5 \( 1 + 1.30T + 125T^{2} \)
7 \( 1 - 18.3T + 343T^{2} \)
13 \( 1 + 9.87T + 2.19e3T^{2} \)
17 \( 1 + 113.T + 4.91e3T^{2} \)
19 \( 1 - 80.8T + 6.85e3T^{2} \)
23 \( 1 + 68.3T + 1.21e4T^{2} \)
29 \( 1 + 271.T + 2.43e4T^{2} \)
31 \( 1 + 240.T + 2.97e4T^{2} \)
37 \( 1 + 70.0T + 5.06e4T^{2} \)
41 \( 1 + 322.T + 6.89e4T^{2} \)
43 \( 1 - 153.T + 7.95e4T^{2} \)
47 \( 1 + 243.T + 1.03e5T^{2} \)
53 \( 1 - 531.T + 1.48e5T^{2} \)
59 \( 1 + 316.T + 2.05e5T^{2} \)
67 \( 1 + 830.T + 3.00e5T^{2} \)
71 \( 1 - 1.13e3T + 3.57e5T^{2} \)
73 \( 1 - 650.T + 3.89e5T^{2} \)
79 \( 1 + 534.T + 4.93e5T^{2} \)
83 \( 1 - 745.T + 5.71e5T^{2} \)
89 \( 1 - 767.T + 7.04e5T^{2} \)
97 \( 1 - 1.17e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.924233588226787132781937698465, −7.947283392928416036067060910378, −7.53863588662329275305669896967, −6.79894472819353250257450370950, −5.84626708245523362711210373952, −4.99841984691895245871831057689, −3.69059539281567962785414839773, −2.14520807633222234587889191933, −1.68222339799902422598772683956, −0.34479071352947815691939542505, 0.34479071352947815691939542505, 1.68222339799902422598772683956, 2.14520807633222234587889191933, 3.69059539281567962785414839773, 4.99841984691895245871831057689, 5.84626708245523362711210373952, 6.79894472819353250257450370950, 7.53863588662329275305669896967, 7.947283392928416036067060910378, 8.924233588226787132781937698465

Graph of the $Z$-function along the critical line