Properties

Label 2-2013-1.1-c3-0-279
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.99·2-s − 3·3-s + 7.99·4-s + 5.91·5-s − 11.9·6-s + 20.5·7-s − 0.00499·8-s + 9·9-s + 23.6·10-s + 11·11-s − 23.9·12-s − 23.2·13-s + 82.2·14-s − 17.7·15-s − 64.0·16-s − 82.6·17-s + 35.9·18-s − 15.7·19-s + 47.3·20-s − 61.6·21-s + 43.9·22-s − 28.4·23-s + 0.0149·24-s − 89.9·25-s − 92.9·26-s − 27·27-s + 164.·28-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 0.999·4-s + 0.529·5-s − 0.816·6-s + 1.10·7-s − 0.000220·8-s + 0.333·9-s + 0.748·10-s + 0.301·11-s − 0.577·12-s − 0.495·13-s + 1.56·14-s − 0.305·15-s − 1.00·16-s − 1.17·17-s + 0.471·18-s − 0.189·19-s + 0.529·20-s − 0.640·21-s + 0.426·22-s − 0.258·23-s + 0.000127·24-s − 0.719·25-s − 0.701·26-s − 0.192·27-s + 1.10·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 3.99T + 8T^{2} \)
5 \( 1 - 5.91T + 125T^{2} \)
7 \( 1 - 20.5T + 343T^{2} \)
13 \( 1 + 23.2T + 2.19e3T^{2} \)
17 \( 1 + 82.6T + 4.91e3T^{2} \)
19 \( 1 + 15.7T + 6.85e3T^{2} \)
23 \( 1 + 28.4T + 1.21e4T^{2} \)
29 \( 1 - 11.8T + 2.43e4T^{2} \)
31 \( 1 + 145.T + 2.97e4T^{2} \)
37 \( 1 + 55.8T + 5.06e4T^{2} \)
41 \( 1 + 261.T + 6.89e4T^{2} \)
43 \( 1 - 145.T + 7.95e4T^{2} \)
47 \( 1 + 358.T + 1.03e5T^{2} \)
53 \( 1 - 651.T + 1.48e5T^{2} \)
59 \( 1 + 465.T + 2.05e5T^{2} \)
67 \( 1 - 541.T + 3.00e5T^{2} \)
71 \( 1 - 621.T + 3.57e5T^{2} \)
73 \( 1 + 448.T + 3.89e5T^{2} \)
79 \( 1 + 371.T + 4.93e5T^{2} \)
83 \( 1 + 218.T + 5.71e5T^{2} \)
89 \( 1 + 1.32e3T + 7.04e5T^{2} \)
97 \( 1 - 1.50e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.367998448151198757473650436789, −7.26829864243008785181510390594, −6.54269428421077978118729027708, −5.77487472676858984019196884975, −5.09965379388447984262885830306, −4.50822268720543183225100379742, −3.73021361632144325087809362755, −2.38817543901759983931067704421, −1.67133279907210361489878520721, 0, 1.67133279907210361489878520721, 2.38817543901759983931067704421, 3.73021361632144325087809362755, 4.50822268720543183225100379742, 5.09965379388447984262885830306, 5.77487472676858984019196884975, 6.54269428421077978118729027708, 7.26829864243008785181510390594, 8.367998448151198757473650436789

Graph of the $Z$-function along the critical line