Properties

Label 2-2013-1.1-c3-0-238
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.46·2-s − 3·3-s + 4.01·4-s − 0.957·5-s − 10.3·6-s − 1.03·7-s − 13.8·8-s + 9·9-s − 3.32·10-s + 11·11-s − 12.0·12-s + 47.3·13-s − 3.58·14-s + 2.87·15-s − 79.9·16-s + 14.2·17-s + 31.1·18-s − 40.3·19-s − 3.84·20-s + 3.09·21-s + 38.1·22-s + 76.3·23-s + 41.4·24-s − 124.·25-s + 164.·26-s − 27·27-s − 4.15·28-s + ⋯
L(s)  = 1  + 1.22·2-s − 0.577·3-s + 0.502·4-s − 0.0856·5-s − 0.707·6-s − 0.0557·7-s − 0.610·8-s + 0.333·9-s − 0.105·10-s + 0.301·11-s − 0.289·12-s + 1.01·13-s − 0.0683·14-s + 0.0494·15-s − 1.24·16-s + 0.203·17-s + 0.408·18-s − 0.487·19-s − 0.0430·20-s + 0.0322·21-s + 0.369·22-s + 0.691·23-s + 0.352·24-s − 0.992·25-s + 1.23·26-s − 0.192·27-s − 0.0280·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 3.46T + 8T^{2} \)
5 \( 1 + 0.957T + 125T^{2} \)
7 \( 1 + 1.03T + 343T^{2} \)
13 \( 1 - 47.3T + 2.19e3T^{2} \)
17 \( 1 - 14.2T + 4.91e3T^{2} \)
19 \( 1 + 40.3T + 6.85e3T^{2} \)
23 \( 1 - 76.3T + 1.21e4T^{2} \)
29 \( 1 + 37.8T + 2.43e4T^{2} \)
31 \( 1 + 33.3T + 2.97e4T^{2} \)
37 \( 1 - 177.T + 5.06e4T^{2} \)
41 \( 1 - 19.2T + 6.89e4T^{2} \)
43 \( 1 - 376.T + 7.95e4T^{2} \)
47 \( 1 + 15.6T + 1.03e5T^{2} \)
53 \( 1 + 474.T + 1.48e5T^{2} \)
59 \( 1 - 521.T + 2.05e5T^{2} \)
67 \( 1 - 856.T + 3.00e5T^{2} \)
71 \( 1 + 1.15e3T + 3.57e5T^{2} \)
73 \( 1 + 480.T + 3.89e5T^{2} \)
79 \( 1 + 386.T + 4.93e5T^{2} \)
83 \( 1 + 175.T + 5.71e5T^{2} \)
89 \( 1 + 728.T + 7.04e5T^{2} \)
97 \( 1 + 1.67e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.403030228299761384424112338995, −7.37057622637308257283225832608, −6.41302112357265536313595510327, −5.94870676702369058743762007732, −5.18498597220399746413663413141, −4.25534117410043824731924312644, −3.72880064607339886491985101892, −2.67479007461989794771787219699, −1.33106502683385590658136070996, 0, 1.33106502683385590658136070996, 2.67479007461989794771787219699, 3.72880064607339886491985101892, 4.25534117410043824731924312644, 5.18498597220399746413663413141, 5.94870676702369058743762007732, 6.41302112357265536313595510327, 7.37057622637308257283225832608, 8.403030228299761384424112338995

Graph of the $Z$-function along the critical line