Properties

Label 2-2013-1.1-c3-0-153
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.65·2-s − 3·3-s − 0.924·4-s − 15.5·5-s − 7.97·6-s − 9.37·7-s − 23.7·8-s + 9·9-s − 41.4·10-s + 11·11-s + 2.77·12-s − 51.4·13-s − 24.9·14-s + 46.7·15-s − 55.7·16-s + 41.6·17-s + 23.9·18-s + 130.·19-s + 14.4·20-s + 28.1·21-s + 29.2·22-s + 208.·23-s + 71.2·24-s + 118.·25-s − 136.·26-s − 27·27-s + 8.66·28-s + ⋯
L(s)  = 1  + 0.940·2-s − 0.577·3-s − 0.115·4-s − 1.39·5-s − 0.542·6-s − 0.506·7-s − 1.04·8-s + 0.333·9-s − 1.31·10-s + 0.301·11-s + 0.0667·12-s − 1.09·13-s − 0.476·14-s + 0.805·15-s − 0.871·16-s + 0.593·17-s + 0.313·18-s + 1.57·19-s + 0.161·20-s + 0.292·21-s + 0.283·22-s + 1.88·23-s + 0.605·24-s + 0.945·25-s − 1.03·26-s − 0.192·27-s + 0.0584·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 2.65T + 8T^{2} \)
5 \( 1 + 15.5T + 125T^{2} \)
7 \( 1 + 9.37T + 343T^{2} \)
13 \( 1 + 51.4T + 2.19e3T^{2} \)
17 \( 1 - 41.6T + 4.91e3T^{2} \)
19 \( 1 - 130.T + 6.85e3T^{2} \)
23 \( 1 - 208.T + 1.21e4T^{2} \)
29 \( 1 - 131.T + 2.43e4T^{2} \)
31 \( 1 + 167.T + 2.97e4T^{2} \)
37 \( 1 - 437.T + 5.06e4T^{2} \)
41 \( 1 + 37.8T + 6.89e4T^{2} \)
43 \( 1 + 38.6T + 7.95e4T^{2} \)
47 \( 1 + 438.T + 1.03e5T^{2} \)
53 \( 1 + 525.T + 1.48e5T^{2} \)
59 \( 1 + 174.T + 2.05e5T^{2} \)
67 \( 1 + 141.T + 3.00e5T^{2} \)
71 \( 1 + 149.T + 3.57e5T^{2} \)
73 \( 1 - 60.2T + 3.89e5T^{2} \)
79 \( 1 - 1.06e3T + 4.93e5T^{2} \)
83 \( 1 + 1.17e3T + 5.71e5T^{2} \)
89 \( 1 + 766.T + 7.04e5T^{2} \)
97 \( 1 + 756.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.235085864998507815460048150859, −7.42537707786568396311013859154, −6.81885906904070765504228906146, −5.81529640583090321620530499793, −4.90725969828516771789231215367, −4.54137058224696898188587840362, −3.36512494420034458437855646818, −3.04185953305809348466987301316, −0.950292725931284140020841165824, 0, 0.950292725931284140020841165824, 3.04185953305809348466987301316, 3.36512494420034458437855646818, 4.54137058224696898188587840362, 4.90725969828516771789231215367, 5.81529640583090321620530499793, 6.81885906904070765504228906146, 7.42537707786568396311013859154, 8.235085864998507815460048150859

Graph of the $Z$-function along the critical line