Properties

Label 2-2013-1.1-c3-0-85
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.54·2-s − 3·3-s − 5.62·4-s − 4.20·5-s + 4.62·6-s − 32.1·7-s + 20.9·8-s + 9·9-s + 6.48·10-s + 11·11-s + 16.8·12-s − 90.3·13-s + 49.5·14-s + 12.6·15-s + 12.6·16-s − 98.2·17-s − 13.8·18-s + 48.8·19-s + 23.6·20-s + 96.3·21-s − 16.9·22-s + 21.6·23-s − 62.9·24-s − 107.·25-s + 139.·26-s − 27·27-s + 180.·28-s + ⋯
L(s)  = 1  − 0.544·2-s − 0.577·3-s − 0.703·4-s − 0.376·5-s + 0.314·6-s − 1.73·7-s + 0.928·8-s + 0.333·9-s + 0.205·10-s + 0.301·11-s + 0.405·12-s − 1.92·13-s + 0.945·14-s + 0.217·15-s + 0.197·16-s − 1.40·17-s − 0.181·18-s + 0.589·19-s + 0.264·20-s + 1.00·21-s − 0.164·22-s + 0.196·23-s − 0.535·24-s − 0.858·25-s + 1.05·26-s − 0.192·27-s + 1.21·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 1.54T + 8T^{2} \)
5 \( 1 + 4.20T + 125T^{2} \)
7 \( 1 + 32.1T + 343T^{2} \)
13 \( 1 + 90.3T + 2.19e3T^{2} \)
17 \( 1 + 98.2T + 4.91e3T^{2} \)
19 \( 1 - 48.8T + 6.85e3T^{2} \)
23 \( 1 - 21.6T + 1.21e4T^{2} \)
29 \( 1 - 171.T + 2.43e4T^{2} \)
31 \( 1 - 211.T + 2.97e4T^{2} \)
37 \( 1 + 57.7T + 5.06e4T^{2} \)
41 \( 1 + 362.T + 6.89e4T^{2} \)
43 \( 1 - 238.T + 7.95e4T^{2} \)
47 \( 1 - 128.T + 1.03e5T^{2} \)
53 \( 1 + 363.T + 1.48e5T^{2} \)
59 \( 1 - 213.T + 2.05e5T^{2} \)
67 \( 1 - 543.T + 3.00e5T^{2} \)
71 \( 1 - 70.9T + 3.57e5T^{2} \)
73 \( 1 + 354.T + 3.89e5T^{2} \)
79 \( 1 - 1.00e3T + 4.93e5T^{2} \)
83 \( 1 - 438.T + 5.71e5T^{2} \)
89 \( 1 - 321.T + 7.04e5T^{2} \)
97 \( 1 - 197.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.563575528278771955486056539032, −7.53020799751184028078786749572, −6.90047432556690418288389739101, −6.21196233819478805862931986653, −5.03249665325030023370465516082, −4.43510021466244743462547675978, −3.43937097656596640583487122858, −2.34085976241641907874462702536, −0.66690969413702292024890482407, 0, 0.66690969413702292024890482407, 2.34085976241641907874462702536, 3.43937097656596640583487122858, 4.43510021466244743462547675978, 5.03249665325030023370465516082, 6.21196233819478805862931986653, 6.90047432556690418288389739101, 7.53020799751184028078786749572, 8.563575528278771955486056539032

Graph of the $Z$-function along the critical line