Properties

Label 2-2013-1.1-c3-0-94
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.29·2-s − 3·3-s − 2.71·4-s − 16.8·5-s + 6.89·6-s − 2.53·7-s + 24.6·8-s + 9·9-s + 38.7·10-s + 11·11-s + 8.13·12-s − 6.61·13-s + 5.82·14-s + 50.5·15-s − 34.9·16-s − 115.·17-s − 20.6·18-s − 18.0·19-s + 45.7·20-s + 7.59·21-s − 25.2·22-s − 112.·23-s − 73.8·24-s + 159.·25-s + 15.2·26-s − 27·27-s + 6.86·28-s + ⋯
L(s)  = 1  − 0.812·2-s − 0.577·3-s − 0.339·4-s − 1.50·5-s + 0.469·6-s − 0.136·7-s + 1.08·8-s + 0.333·9-s + 1.22·10-s + 0.301·11-s + 0.195·12-s − 0.141·13-s + 0.111·14-s + 0.870·15-s − 0.545·16-s − 1.65·17-s − 0.270·18-s − 0.217·19-s + 0.511·20-s + 0.0789·21-s − 0.245·22-s − 1.02·23-s − 0.628·24-s + 1.27·25-s + 0.114·26-s − 0.192·27-s + 0.0463·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 2.29T + 8T^{2} \)
5 \( 1 + 16.8T + 125T^{2} \)
7 \( 1 + 2.53T + 343T^{2} \)
13 \( 1 + 6.61T + 2.19e3T^{2} \)
17 \( 1 + 115.T + 4.91e3T^{2} \)
19 \( 1 + 18.0T + 6.85e3T^{2} \)
23 \( 1 + 112.T + 1.21e4T^{2} \)
29 \( 1 - 196.T + 2.43e4T^{2} \)
31 \( 1 + 333.T + 2.97e4T^{2} \)
37 \( 1 - 277.T + 5.06e4T^{2} \)
41 \( 1 - 102.T + 6.89e4T^{2} \)
43 \( 1 + 185.T + 7.95e4T^{2} \)
47 \( 1 + 174.T + 1.03e5T^{2} \)
53 \( 1 - 749.T + 1.48e5T^{2} \)
59 \( 1 - 781.T + 2.05e5T^{2} \)
67 \( 1 - 604.T + 3.00e5T^{2} \)
71 \( 1 + 763.T + 3.57e5T^{2} \)
73 \( 1 + 624.T + 3.89e5T^{2} \)
79 \( 1 - 489.T + 4.93e5T^{2} \)
83 \( 1 + 714.T + 5.71e5T^{2} \)
89 \( 1 - 1.61e3T + 7.04e5T^{2} \)
97 \( 1 - 1.30e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.519288680402238732678383653964, −7.67950641319725601610469318428, −7.09456422964598367155690402074, −6.23746480839812316240965421566, −4.94766229125891460904293648444, −4.28425525960452169219548184771, −3.69222555502216933028062566511, −2.09104547599037861769750407489, −0.70697540140630557097956268296, 0, 0.70697540140630557097956268296, 2.09104547599037861769750407489, 3.69222555502216933028062566511, 4.28425525960452169219548184771, 4.94766229125891460904293648444, 6.23746480839812316240965421566, 7.09456422964598367155690402074, 7.67950641319725601610469318428, 8.519288680402238732678383653964

Graph of the $Z$-function along the critical line