Properties

Label 2-2013-1.1-c3-0-250
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.709·2-s + 3·3-s − 7.49·4-s + 5.73·5-s + 2.12·6-s + 14.2·7-s − 10.9·8-s + 9·9-s + 4.06·10-s − 11·11-s − 22.4·12-s + 39.9·13-s + 10.1·14-s + 17.2·15-s + 52.1·16-s − 105.·17-s + 6.38·18-s − 127.·19-s − 42.9·20-s + 42.8·21-s − 7.80·22-s + 89.5·23-s − 32.9·24-s − 92.1·25-s + 28.3·26-s + 27·27-s − 107.·28-s + ⋯
L(s)  = 1  + 0.250·2-s + 0.577·3-s − 0.937·4-s + 0.512·5-s + 0.144·6-s + 0.770·7-s − 0.485·8-s + 0.333·9-s + 0.128·10-s − 0.301·11-s − 0.541·12-s + 0.851·13-s + 0.193·14-s + 0.296·15-s + 0.815·16-s − 1.50·17-s + 0.0835·18-s − 1.53·19-s − 0.480·20-s + 0.445·21-s − 0.0755·22-s + 0.811·23-s − 0.280·24-s − 0.736·25-s + 0.213·26-s + 0.192·27-s − 0.722·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 0.709T + 8T^{2} \)
5 \( 1 - 5.73T + 125T^{2} \)
7 \( 1 - 14.2T + 343T^{2} \)
13 \( 1 - 39.9T + 2.19e3T^{2} \)
17 \( 1 + 105.T + 4.91e3T^{2} \)
19 \( 1 + 127.T + 6.85e3T^{2} \)
23 \( 1 - 89.5T + 1.21e4T^{2} \)
29 \( 1 - 12.7T + 2.43e4T^{2} \)
31 \( 1 - 229.T + 2.97e4T^{2} \)
37 \( 1 - 196.T + 5.06e4T^{2} \)
41 \( 1 + 452.T + 6.89e4T^{2} \)
43 \( 1 - 177.T + 7.95e4T^{2} \)
47 \( 1 + 338.T + 1.03e5T^{2} \)
53 \( 1 + 687.T + 1.48e5T^{2} \)
59 \( 1 + 428.T + 2.05e5T^{2} \)
67 \( 1 + 529.T + 3.00e5T^{2} \)
71 \( 1 - 993.T + 3.57e5T^{2} \)
73 \( 1 - 113.T + 3.89e5T^{2} \)
79 \( 1 - 173.T + 4.93e5T^{2} \)
83 \( 1 - 687.T + 5.71e5T^{2} \)
89 \( 1 - 25.8T + 7.04e5T^{2} \)
97 \( 1 - 216.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.306085072812602775257959198171, −8.106074577128828735552270835205, −6.63951229113180558328716830774, −6.06997292013286491965419374226, −4.81639784430640052255999378009, −4.51465517376080637216704084080, −3.47168346621393221701221424216, −2.36566130625483465847930370069, −1.41886449402990808699998908862, 0, 1.41886449402990808699998908862, 2.36566130625483465847930370069, 3.47168346621393221701221424216, 4.51465517376080637216704084080, 4.81639784430640052255999378009, 6.06997292013286491965419374226, 6.63951229113180558328716830774, 8.106074577128828735552270835205, 8.306085072812602775257959198171

Graph of the $Z$-function along the critical line