Properties

Label 2-2013-1.1-c3-0-245
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.169·2-s + 3·3-s − 7.97·4-s + 0.479·5-s − 0.509·6-s + 32.7·7-s + 2.71·8-s + 9·9-s − 0.0814·10-s − 11·11-s − 23.9·12-s − 42.6·13-s − 5.54·14-s + 1.43·15-s + 63.3·16-s + 48.6·17-s − 1.52·18-s − 11.4·19-s − 3.82·20-s + 98.1·21-s + 1.86·22-s − 68.1·23-s + 8.13·24-s − 124.·25-s + 7.24·26-s + 27·27-s − 260.·28-s + ⋯
L(s)  = 1  − 0.0599·2-s + 0.577·3-s − 0.996·4-s + 0.0429·5-s − 0.0346·6-s + 1.76·7-s + 0.119·8-s + 0.333·9-s − 0.00257·10-s − 0.301·11-s − 0.575·12-s − 0.910·13-s − 0.105·14-s + 0.0247·15-s + 0.989·16-s + 0.693·17-s − 0.0199·18-s − 0.138·19-s − 0.0427·20-s + 1.01·21-s + 0.0180·22-s − 0.618·23-s + 0.0691·24-s − 0.998·25-s + 0.0546·26-s + 0.192·27-s − 1.75·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 0.169T + 8T^{2} \)
5 \( 1 - 0.479T + 125T^{2} \)
7 \( 1 - 32.7T + 343T^{2} \)
13 \( 1 + 42.6T + 2.19e3T^{2} \)
17 \( 1 - 48.6T + 4.91e3T^{2} \)
19 \( 1 + 11.4T + 6.85e3T^{2} \)
23 \( 1 + 68.1T + 1.21e4T^{2} \)
29 \( 1 - 5.67T + 2.43e4T^{2} \)
31 \( 1 + 132.T + 2.97e4T^{2} \)
37 \( 1 + 304.T + 5.06e4T^{2} \)
41 \( 1 + 431.T + 6.89e4T^{2} \)
43 \( 1 - 131.T + 7.95e4T^{2} \)
47 \( 1 - 64.2T + 1.03e5T^{2} \)
53 \( 1 - 123.T + 1.48e5T^{2} \)
59 \( 1 - 780.T + 2.05e5T^{2} \)
67 \( 1 + 133.T + 3.00e5T^{2} \)
71 \( 1 + 1.06e3T + 3.57e5T^{2} \)
73 \( 1 + 142.T + 3.89e5T^{2} \)
79 \( 1 + 763.T + 4.93e5T^{2} \)
83 \( 1 - 661.T + 5.71e5T^{2} \)
89 \( 1 + 1.53e3T + 7.04e5T^{2} \)
97 \( 1 - 1.12e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.468677684334591670718143968401, −7.74750631154203164614752872713, −7.28132452940959213156106432277, −5.65532874153876252789174098301, −5.10053366422456469653015389090, −4.36656751150573662252614070164, −3.53949558655106396620765109100, −2.19484441429398991918693567801, −1.39527452253446558111648608667, 0, 1.39527452253446558111648608667, 2.19484441429398991918693567801, 3.53949558655106396620765109100, 4.36656751150573662252614070164, 5.10053366422456469653015389090, 5.65532874153876252789174098301, 7.28132452940959213156106432277, 7.74750631154203164614752872713, 8.468677684334591670718143968401

Graph of the $Z$-function along the critical line