Properties

Label 2-2013-1.1-c3-0-226
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·2-s + 3·3-s − 5.99·4-s + 8.60·5-s − 4.25·6-s + 2.21·7-s + 19.8·8-s + 9·9-s − 12.2·10-s − 11·11-s − 17.9·12-s − 62.2·13-s − 3.14·14-s + 25.8·15-s + 19.8·16-s + 59.5·17-s − 12.7·18-s + 65.5·19-s − 51.5·20-s + 6.65·21-s + 15.5·22-s + 2.75·23-s + 59.4·24-s − 50.9·25-s + 88.1·26-s + 27·27-s − 13.2·28-s + ⋯
L(s)  = 1  − 0.501·2-s + 0.577·3-s − 0.748·4-s + 0.769·5-s − 0.289·6-s + 0.119·7-s + 0.876·8-s + 0.333·9-s − 0.385·10-s − 0.301·11-s − 0.432·12-s − 1.32·13-s − 0.0600·14-s + 0.444·15-s + 0.309·16-s + 0.849·17-s − 0.167·18-s + 0.791·19-s − 0.576·20-s + 0.0691·21-s + 0.151·22-s + 0.0249·23-s + 0.506·24-s − 0.407·25-s + 0.665·26-s + 0.192·27-s − 0.0896·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 1.41T + 8T^{2} \)
5 \( 1 - 8.60T + 125T^{2} \)
7 \( 1 - 2.21T + 343T^{2} \)
13 \( 1 + 62.2T + 2.19e3T^{2} \)
17 \( 1 - 59.5T + 4.91e3T^{2} \)
19 \( 1 - 65.5T + 6.85e3T^{2} \)
23 \( 1 - 2.75T + 1.21e4T^{2} \)
29 \( 1 + 266.T + 2.43e4T^{2} \)
31 \( 1 - 81.9T + 2.97e4T^{2} \)
37 \( 1 + 82.5T + 5.06e4T^{2} \)
41 \( 1 - 424.T + 6.89e4T^{2} \)
43 \( 1 + 332.T + 7.95e4T^{2} \)
47 \( 1 - 409.T + 1.03e5T^{2} \)
53 \( 1 - 331.T + 1.48e5T^{2} \)
59 \( 1 + 700.T + 2.05e5T^{2} \)
67 \( 1 + 520.T + 3.00e5T^{2} \)
71 \( 1 - 582.T + 3.57e5T^{2} \)
73 \( 1 - 526.T + 3.89e5T^{2} \)
79 \( 1 + 1.17e3T + 4.93e5T^{2} \)
83 \( 1 + 161.T + 5.71e5T^{2} \)
89 \( 1 + 982.T + 7.04e5T^{2} \)
97 \( 1 + 1.40e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.489201283073800606508025827377, −7.60945835853108442667478866578, −7.31801830297086102930896978349, −5.82735063822508555770072148143, −5.21968083746149641794107228215, −4.34291801921353738007479766843, −3.28380648148925067414171344633, −2.23281991385902015140233194253, −1.28232170164513921595048891703, 0, 1.28232170164513921595048891703, 2.23281991385902015140233194253, 3.28380648148925067414171344633, 4.34291801921353738007479766843, 5.21968083746149641794107228215, 5.82735063822508555770072148143, 7.31801830297086102930896978349, 7.60945835853108442667478866578, 8.489201283073800606508025827377

Graph of the $Z$-function along the critical line