Properties

Label 2-2013-1.1-c3-0-260
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.46·2-s − 3·3-s + 11.9·4-s − 10.8·5-s − 13.3·6-s + 19.5·7-s + 17.6·8-s + 9·9-s − 48.5·10-s − 11·11-s − 35.8·12-s + 76.7·13-s + 87.2·14-s + 32.5·15-s − 16.8·16-s − 67.6·17-s + 40.1·18-s − 131.·19-s − 129.·20-s − 58.6·21-s − 49.1·22-s − 7.91·23-s − 52.8·24-s − 7.03·25-s + 342.·26-s − 27·27-s + 233.·28-s + ⋯
L(s)  = 1  + 1.57·2-s − 0.577·3-s + 1.49·4-s − 0.971·5-s − 0.911·6-s + 1.05·7-s + 0.779·8-s + 0.333·9-s − 1.53·10-s − 0.301·11-s − 0.862·12-s + 1.63·13-s + 1.66·14-s + 0.560·15-s − 0.263·16-s − 0.965·17-s + 0.526·18-s − 1.58·19-s − 1.45·20-s − 0.608·21-s − 0.476·22-s − 0.0717·23-s − 0.449·24-s − 0.0562·25-s + 2.58·26-s − 0.192·27-s + 1.57·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 4.46T + 8T^{2} \)
5 \( 1 + 10.8T + 125T^{2} \)
7 \( 1 - 19.5T + 343T^{2} \)
13 \( 1 - 76.7T + 2.19e3T^{2} \)
17 \( 1 + 67.6T + 4.91e3T^{2} \)
19 \( 1 + 131.T + 6.85e3T^{2} \)
23 \( 1 + 7.91T + 1.21e4T^{2} \)
29 \( 1 - 293.T + 2.43e4T^{2} \)
31 \( 1 + 178.T + 2.97e4T^{2} \)
37 \( 1 - 49.7T + 5.06e4T^{2} \)
41 \( 1 + 129.T + 6.89e4T^{2} \)
43 \( 1 - 262.T + 7.95e4T^{2} \)
47 \( 1 - 68.5T + 1.03e5T^{2} \)
53 \( 1 - 636.T + 1.48e5T^{2} \)
59 \( 1 + 846.T + 2.05e5T^{2} \)
67 \( 1 + 863.T + 3.00e5T^{2} \)
71 \( 1 - 388.T + 3.57e5T^{2} \)
73 \( 1 + 605.T + 3.89e5T^{2} \)
79 \( 1 + 283.T + 4.93e5T^{2} \)
83 \( 1 + 339.T + 5.71e5T^{2} \)
89 \( 1 + 120.T + 7.04e5T^{2} \)
97 \( 1 + 1.40e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.354432156406336969935678917919, −7.38305471131813307139845851286, −6.47132139806103607574247471646, −5.94190447837430456710204464788, −4.95908215485821609484353707568, −4.25283904810584956161518811360, −3.92186970124121933498610953482, −2.64595638396143322697638838427, −1.49795826374016014095172586061, 0, 1.49795826374016014095172586061, 2.64595638396143322697638838427, 3.92186970124121933498610953482, 4.25283904810584956161518811360, 4.95908215485821609484353707568, 5.94190447837430456710204464788, 6.47132139806103607574247471646, 7.38305471131813307139845851286, 8.354432156406336969935678917919

Graph of the $Z$-function along the critical line