Properties

Label 2-2013-1.1-c3-0-278
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.39·2-s − 3·3-s + 11.3·4-s + 2.45·5-s − 13.1·6-s + 13.1·7-s + 14.6·8-s + 9·9-s + 10.7·10-s − 11·11-s − 33.9·12-s + 12.0·13-s + 57.8·14-s − 7.35·15-s − 26.2·16-s − 60.4·17-s + 39.5·18-s + 78.9·19-s + 27.7·20-s − 39.4·21-s − 48.3·22-s − 209.·23-s − 43.9·24-s − 118.·25-s + 52.9·26-s − 27·27-s + 149.·28-s + ⋯
L(s)  = 1  + 1.55·2-s − 0.577·3-s + 1.41·4-s + 0.219·5-s − 0.897·6-s + 0.710·7-s + 0.647·8-s + 0.333·9-s + 0.340·10-s − 0.301·11-s − 0.817·12-s + 0.256·13-s + 1.10·14-s − 0.126·15-s − 0.409·16-s − 0.862·17-s + 0.518·18-s + 0.953·19-s + 0.310·20-s − 0.410·21-s − 0.468·22-s − 1.89·23-s − 0.373·24-s − 0.951·25-s + 0.399·26-s − 0.192·27-s + 1.00·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 4.39T + 8T^{2} \)
5 \( 1 - 2.45T + 125T^{2} \)
7 \( 1 - 13.1T + 343T^{2} \)
13 \( 1 - 12.0T + 2.19e3T^{2} \)
17 \( 1 + 60.4T + 4.91e3T^{2} \)
19 \( 1 - 78.9T + 6.85e3T^{2} \)
23 \( 1 + 209.T + 1.21e4T^{2} \)
29 \( 1 + 276.T + 2.43e4T^{2} \)
31 \( 1 - 89.4T + 2.97e4T^{2} \)
37 \( 1 - 201.T + 5.06e4T^{2} \)
41 \( 1 - 341.T + 6.89e4T^{2} \)
43 \( 1 + 540.T + 7.95e4T^{2} \)
47 \( 1 - 50.5T + 1.03e5T^{2} \)
53 \( 1 - 526.T + 1.48e5T^{2} \)
59 \( 1 - 466.T + 2.05e5T^{2} \)
67 \( 1 + 661.T + 3.00e5T^{2} \)
71 \( 1 + 597.T + 3.57e5T^{2} \)
73 \( 1 - 431.T + 3.89e5T^{2} \)
79 \( 1 - 358.T + 4.93e5T^{2} \)
83 \( 1 + 931.T + 5.71e5T^{2} \)
89 \( 1 - 1.11e3T + 7.04e5T^{2} \)
97 \( 1 + 1.48e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.137254581998217015096555790411, −7.40961307070312696650863970835, −6.43328261042008827556872532644, −5.74978814947371357929458647190, −5.26592887724435718105879322678, −4.30773485685555032575008981759, −3.79099269868175101546454698539, −2.48921792020245972399596775946, −1.65968035853535469564762473282, 0, 1.65968035853535469564762473282, 2.48921792020245972399596775946, 3.79099269868175101546454698539, 4.30773485685555032575008981759, 5.26592887724435718105879322678, 5.74978814947371357929458647190, 6.43328261042008827556872532644, 7.40961307070312696650863970835, 8.137254581998217015096555790411

Graph of the $Z$-function along the critical line