Properties

Label 2-2013-1.1-c3-0-280
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.07·2-s − 3·3-s + 8.57·4-s + 17.2·5-s − 12.2·6-s − 8.63·7-s + 2.35·8-s + 9·9-s + 70.2·10-s − 11·11-s − 25.7·12-s − 3.05·13-s − 35.1·14-s − 51.7·15-s − 59.0·16-s − 93.5·17-s + 36.6·18-s + 5.17·19-s + 148.·20-s + 25.9·21-s − 44.7·22-s + 61.2·23-s − 7.07·24-s + 172.·25-s − 12.4·26-s − 27·27-s − 74.1·28-s + ⋯
L(s)  = 1  + 1.43·2-s − 0.577·3-s + 1.07·4-s + 1.54·5-s − 0.831·6-s − 0.466·7-s + 0.104·8-s + 0.333·9-s + 2.22·10-s − 0.301·11-s − 0.619·12-s − 0.0651·13-s − 0.671·14-s − 0.891·15-s − 0.922·16-s − 1.33·17-s + 0.479·18-s + 0.0625·19-s + 1.65·20-s + 0.269·21-s − 0.434·22-s + 0.555·23-s − 0.0601·24-s + 1.38·25-s − 0.0938·26-s − 0.192·27-s − 0.500·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 4.07T + 8T^{2} \)
5 \( 1 - 17.2T + 125T^{2} \)
7 \( 1 + 8.63T + 343T^{2} \)
13 \( 1 + 3.05T + 2.19e3T^{2} \)
17 \( 1 + 93.5T + 4.91e3T^{2} \)
19 \( 1 - 5.17T + 6.85e3T^{2} \)
23 \( 1 - 61.2T + 1.21e4T^{2} \)
29 \( 1 - 110.T + 2.43e4T^{2} \)
31 \( 1 + 188.T + 2.97e4T^{2} \)
37 \( 1 - 109.T + 5.06e4T^{2} \)
41 \( 1 + 378.T + 6.89e4T^{2} \)
43 \( 1 + 244.T + 7.95e4T^{2} \)
47 \( 1 + 7.20T + 1.03e5T^{2} \)
53 \( 1 + 652.T + 1.48e5T^{2} \)
59 \( 1 - 173.T + 2.05e5T^{2} \)
67 \( 1 + 205.T + 3.00e5T^{2} \)
71 \( 1 - 813.T + 3.57e5T^{2} \)
73 \( 1 - 243.T + 3.89e5T^{2} \)
79 \( 1 + 378.T + 4.93e5T^{2} \)
83 \( 1 + 479.T + 5.71e5T^{2} \)
89 \( 1 + 314.T + 7.04e5T^{2} \)
97 \( 1 + 1.03e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.518985448524148884156513303274, −6.97650959763361425533955609245, −6.51646719182893958989292351163, −5.90535014724490226077974499538, −5.13800941332271474906769621845, −4.65295454069671223034191207511, −3.44035805674771958585820991076, −2.53753875341419879617784221296, −1.67327698287507289476012707824, 0, 1.67327698287507289476012707824, 2.53753875341419879617784221296, 3.44035805674771958585820991076, 4.65295454069671223034191207511, 5.13800941332271474906769621845, 5.90535014724490226077974499538, 6.51646719182893958989292351163, 6.97650959763361425533955609245, 8.518985448524148884156513303274

Graph of the $Z$-function along the critical line