Properties

Label 2-2013-1.1-c3-0-267
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.77·2-s − 3·3-s + 6.25·4-s + 16.4·5-s − 11.3·6-s − 8.52·7-s − 6.60·8-s + 9·9-s + 62.1·10-s − 11·11-s − 18.7·12-s − 45.6·13-s − 32.1·14-s − 49.3·15-s − 74.9·16-s + 130.·17-s + 33.9·18-s − 78.9·19-s + 102.·20-s + 25.5·21-s − 41.5·22-s − 34.6·23-s + 19.8·24-s + 146.·25-s − 172.·26-s − 27·27-s − 53.2·28-s + ⋯
L(s)  = 1  + 1.33·2-s − 0.577·3-s + 0.781·4-s + 1.47·5-s − 0.770·6-s − 0.460·7-s − 0.291·8-s + 0.333·9-s + 1.96·10-s − 0.301·11-s − 0.451·12-s − 0.973·13-s − 0.614·14-s − 0.850·15-s − 1.17·16-s + 1.86·17-s + 0.444·18-s − 0.952·19-s + 1.15·20-s + 0.265·21-s − 0.402·22-s − 0.314·23-s + 0.168·24-s + 1.16·25-s − 1.29·26-s − 0.192·27-s − 0.359·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 3.77T + 8T^{2} \)
5 \( 1 - 16.4T + 125T^{2} \)
7 \( 1 + 8.52T + 343T^{2} \)
13 \( 1 + 45.6T + 2.19e3T^{2} \)
17 \( 1 - 130.T + 4.91e3T^{2} \)
19 \( 1 + 78.9T + 6.85e3T^{2} \)
23 \( 1 + 34.6T + 1.21e4T^{2} \)
29 \( 1 - 84.5T + 2.43e4T^{2} \)
31 \( 1 - 164.T + 2.97e4T^{2} \)
37 \( 1 + 323.T + 5.06e4T^{2} \)
41 \( 1 + 1.70T + 6.89e4T^{2} \)
43 \( 1 + 216.T + 7.95e4T^{2} \)
47 \( 1 + 240.T + 1.03e5T^{2} \)
53 \( 1 - 140.T + 1.48e5T^{2} \)
59 \( 1 + 641.T + 2.05e5T^{2} \)
67 \( 1 - 379.T + 3.00e5T^{2} \)
71 \( 1 + 898.T + 3.57e5T^{2} \)
73 \( 1 + 848.T + 3.89e5T^{2} \)
79 \( 1 + 122.T + 4.93e5T^{2} \)
83 \( 1 + 349.T + 5.71e5T^{2} \)
89 \( 1 - 313.T + 7.04e5T^{2} \)
97 \( 1 + 47.2T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.407482044808663413044838800471, −7.20324425754974754307361340957, −6.35995065077076540379104299517, −5.90594238436950225784242744315, −5.18976963167747099710943552979, −4.64706480605066640768916512110, −3.38498884084267591741194997667, −2.61717212831886942328566410471, −1.56959236596183102793918036991, 0, 1.56959236596183102793918036991, 2.61717212831886942328566410471, 3.38498884084267591741194997667, 4.64706480605066640768916512110, 5.18976963167747099710943552979, 5.90594238436950225784242744315, 6.35995065077076540379104299517, 7.20324425754974754307361340957, 8.407482044808663413044838800471

Graph of the $Z$-function along the critical line