Properties

Label 2-2013-1.1-c3-0-80
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.44·2-s − 3·3-s − 5.92·4-s − 17.1·5-s − 4.32·6-s − 35.8·7-s − 20.0·8-s + 9·9-s − 24.6·10-s − 11·11-s + 17.7·12-s − 18.8·13-s − 51.6·14-s + 51.4·15-s + 18.4·16-s + 115.·17-s + 12.9·18-s − 106.·19-s + 101.·20-s + 107.·21-s − 15.8·22-s + 53.7·23-s + 60.1·24-s + 168.·25-s − 27.1·26-s − 27·27-s + 212.·28-s + ⋯
L(s)  = 1  + 0.509·2-s − 0.577·3-s − 0.740·4-s − 1.53·5-s − 0.294·6-s − 1.93·7-s − 0.886·8-s + 0.333·9-s − 0.780·10-s − 0.301·11-s + 0.427·12-s − 0.402·13-s − 0.986·14-s + 0.884·15-s + 0.288·16-s + 1.64·17-s + 0.169·18-s − 1.28·19-s + 1.13·20-s + 1.11·21-s − 0.153·22-s + 0.487·23-s + 0.511·24-s + 1.34·25-s − 0.204·26-s − 0.192·27-s + 1.43·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 - 61T \)
good2 \( 1 - 1.44T + 8T^{2} \)
5 \( 1 + 17.1T + 125T^{2} \)
7 \( 1 + 35.8T + 343T^{2} \)
13 \( 1 + 18.8T + 2.19e3T^{2} \)
17 \( 1 - 115.T + 4.91e3T^{2} \)
19 \( 1 + 106.T + 6.85e3T^{2} \)
23 \( 1 - 53.7T + 1.21e4T^{2} \)
29 \( 1 - 36.7T + 2.43e4T^{2} \)
31 \( 1 + 83.6T + 2.97e4T^{2} \)
37 \( 1 - 78.0T + 5.06e4T^{2} \)
41 \( 1 + 483.T + 6.89e4T^{2} \)
43 \( 1 - 426.T + 7.95e4T^{2} \)
47 \( 1 + 247.T + 1.03e5T^{2} \)
53 \( 1 - 216.T + 1.48e5T^{2} \)
59 \( 1 + 586.T + 2.05e5T^{2} \)
67 \( 1 - 923.T + 3.00e5T^{2} \)
71 \( 1 + 171.T + 3.57e5T^{2} \)
73 \( 1 + 381.T + 3.89e5T^{2} \)
79 \( 1 - 368.T + 4.93e5T^{2} \)
83 \( 1 + 950.T + 5.71e5T^{2} \)
89 \( 1 - 768.T + 7.04e5T^{2} \)
97 \( 1 - 90.8T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.374323649925868843898545728318, −7.53302298390584205751872144854, −6.73985949297596053897849805123, −5.95910973558057392137907271470, −5.11668329454381570976340742970, −4.17245166564631192495348324918, −3.55253340319581281311027936104, −2.93242582132244031255993399467, −0.65193354960269550813050834849, 0, 0.65193354960269550813050834849, 2.93242582132244031255993399467, 3.55253340319581281311027936104, 4.17245166564631192495348324918, 5.11668329454381570976340742970, 5.95910973558057392137907271470, 6.73985949297596053897849805123, 7.53302298390584205751872144854, 8.374323649925868843898545728318

Graph of the $Z$-function along the critical line